Solveeit Logo

Question

Question: Differentiate with respect to x \[\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}\]...

Differentiate with respect to x
sin(ax+b)cos(cx+d)\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}

Explanation

Solution

We have to solve this differentiation using quotient rule. We separately solve for derivatives of numerator and denominator using chain rule and then substitute in the formula for quotient rule. Then separating the terms we try to form trigonometric forms in the final answer.

  • Quotient rule states that differentiation of ddx(uv)=vuuvv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}} where uu'is differentiation of u with respect to x and vv'is differentiation of v with respect to x.
  • Chain rule which will be used within the differentiation is given as ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x) where ff'denotes differentiation of function f with respect to x and gg'denotes differentiation of function g with respect to x.

Complete step-by-step answer:
We write the differentiation as ddx(sin(ax+b)cos(cx+d))\dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right).
Now comparing with ddx(uv)\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right), we get u=sin(ax+b),v=cos(cx+d)u = \sin (ax + b),v = \cos (cx + d)
First we find the values of uu'and vv'using chain rule.
Since, u=sin(ax+b)u = \sin (ax + b)
u=d(u)dx=ddx(sin(ax+b))\Rightarrow u' = \dfrac{{d(u)}}{{dx}} = \dfrac{d}{{dx}}(\sin (ax + b))
According to chain rule ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)
Substitute the value of f(x)=sin(g(x)),g(x)=(ax+b)f(x) = \sin (g(x)),g(x) = (ax + b)
Then f(x)=df(x)dx=dsin(g(x))dx=cos(g(x))f'(x) = \dfrac{{df(x)}}{{dx}} = \dfrac{{d\sin (g(x))}}{{dx}} = \cos (g(x)) and g(x)=dg(x)dx=d(ax+b)dx=ag'(x) = \dfrac{{dg(x)}}{{dx}} = \dfrac{{d(ax + b)}}{{dx}} = a
ddx[sin(ax+b)]=cos(ax+b).a\dfrac{d}{{dx}}\left[ {\sin (ax + b)} \right] = \cos (ax + b).a
u=acos(ax+b)\Rightarrow u' = a\cos (ax + b) … (1)
Since, v=cos(cx+d)v = \cos (cx + d)
v=d(v)dx=ddx(cos(cx+d))\Rightarrow v' = \dfrac{{d(v)}}{{dx}} = \dfrac{d}{{dx}}(\cos (cx + d))
According to chain rule ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)
Substitute the value of f(x)=cos(g(x)),g(x)=(cx+d)f(x) = \cos (g(x)),g(x) = (cx + d)
Then f(x)=df(x)dx=dcos(g(x))dx=sin(g(x))f'(x) = \dfrac{{df(x)}}{{dx}} = \dfrac{{d\cos (g(x))}}{{dx}} = - \sin (g(x)) and g(x)=dg(x)dx=d(cx+d)dx=cg'(x) = \dfrac{{dg(x)}}{{dx}} = \dfrac{{d(cx + d)}}{{dx}} = c
ddx[cos(cx+d)]=sin(cx+d).c\dfrac{d}{{dx}}\left[ {\cos (cx + d)} \right] = - \sin (cx + d).c
v=csin(cx+d)\Rightarrow v' = - c\sin (cx + d) … (2)
We solveddx(sin(ax+b)cos(cx+d))\dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) using quotient rule which is ddx(uv)=vuuvv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}
Here, u=sin(ax+b),v=cos(cx+d)u = \sin (ax + b),v = \cos (cx + d)and u=acos(ax+b),v=csin(cx+d)u' = a\cos (ax + b),v' = - c\sin (cx + d)
ddx(sin(ax+b)cos(cx+d))=(cos(cx+d))(acos(ax+b))(sin(ax+b))(csin(cx+d))(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( {\cos (cx + d)} \right)\left( {a\cos (ax + b)} \right) - \left( {\sin (ax + b)} \right)\left( { - c\sin (cx + d)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
Multiplying the brackets in the numerator
ddx(sin(ax+b)cos(cx+d))=a(cos(ax+b)cos(cx+d))+c(sin(ax+b)sin(cx+d))cos2(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{a\left( {\cos (ax + b)\cos (cx + d)} \right) + c\left( {\sin (ax + b)\sin (cx + d)} \right)}}{{{{\cos }^2}(cx + d)}}
Now we separate the terms in the numerator
ddx(sin(ax+b)cos(cx+d))=a(cos(ax+b)cos(cx+d))cos(cx+d)cos(cx+d)+c(sin(ax+b)sin(cx+d))cos(cx+d)cos(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{a\left( {\cos (ax + b)\cos (cx + d)} \right)}}{{\cos (cx + d)\cos (cx + d)}} + \dfrac{{c\left( {\sin (ax + b)\sin (cx + d)} \right)}}{{\cos (cx + d)\cos (cx + d)}}
Cancelling out the same terms from numerator and denominator.
ddx(sin(ax+b)cos(cx+d))=a(cos(ax+b))cos(cx+d)+c(sin(ax+b)sin(cx+d))cos(cx+d)cos(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{a\left( {\cos (ax + b)} \right)}}{{\cos (cx + d)}} + \dfrac{{c\left( {\sin (ax + b)\sin (cx + d)} \right)}}{{\cos (cx + d)\cos (cx + d)}}
Now we separate the terms
ddx(sin(ax+b)cos(cx+d))=acos(ax+b).1cos(cx+d)+csin(ax+b).sin(cx+d)cos(cx+d).1cos(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = a\cos (ax + b).\dfrac{1}{{\cos (cx + d)}} + c\sin (ax + b).\dfrac{{\sin (cx + d)}}{{\cos (cx + d)}}.\dfrac{1}{{\cos (cx + d)}}
Substituting the values of 1cos(cx+d)=sec(cx+d),sin(cx+d)cos(cx+d)=tan(cx+d)\dfrac{1}{{\cos (cx + d)}} = \sec (cx + d),\dfrac{{\sin (cx + d)}}{{\cos (cx + d)}} = \tan (cx + d)
ddx(sin(ax+b)cos(cx+d))=acos(ax+b)sec(cx+d)+csin(ax+b)tan(cx+d)sec(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = a\cos (ax + b)\sec (cx + d) + c\sin (ax + b)\tan (cx + d)\sec (cx + d)
Thus differentiation of sin(ax+b)cos(cx+d)\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}} with respect to x is acos(ax+b)sec(cx+d)+csin(ax+b)tan(cx+d)sec(cx+d)a\cos (ax + b)\sec (cx + d) + c\sin (ax + b)\tan (cx + d)\sec (cx + d)

Note: Students are likely to make mistake of multiplying both numerator and denominator by 2 to make use of the formula which will convert the numerator i.e.2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos (A - B) - \cos (A + B) and 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B)
Students are advised not to operate in such a way because this makes our angles inside the bracket even more complicated.