Solveeit Logo

Question

Question: Differentiate with respect to x: \(3{{x}^{2}}-{{e}^{-3x}}+\sec x\)....

Differentiate with respect to x: 3x2e3x+secx3{{x}^{2}}-{{e}^{-3x}}+\sec x.

Explanation

Solution

Hint: We will be using the concept of differential calculus to solve the problem. We will be using chain rule of differentiation to solve the problem.

Complete step-by-step answer:
Now, we have to differentiate 3x2e3x+secx3{{x}^{2}}-{{e}^{-3x}}+\sec x with respect to x.
So, we let,
f(x)=3x2e3x+secxf\left( x \right)=3{{x}^{2}}-{{e}^{-3x}}+\sec x
Now, we know that if f(x)=g(x)+h(x)f\left( x \right)=g\left( x \right)+h\left( x \right) then,
ddxf(x)=ddxg(x)+ddxh(x)\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}h\left( x \right)
Therefore, we have,
ddxf(x)=ddx(3x2)ddx(e3x)+ddx(secx)\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( 3{{x}^{2}} \right)-\dfrac{d}{dx}\left( {{e}^{-3x}} \right)+\dfrac{d}{dx}\left( \sec x \right)
Now, we know that,
ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
Now, we know that according to chain rule,

& \dfrac{d}{dx}\left( {{e}^{-ax}} \right)={{e}^{-ax}}\times \dfrac{d}{dx}\left( -ax \right) \\\ & \dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x \\\ \end{aligned}$$ So, we have, $$\begin{aligned} & \dfrac{d}{dx}f\left( x \right)=3\times 2x-\left( -3 \right){{e}^{-3x}}+\sec x\tan x \\\ & =6x+3{{e}^{-3x}}+\sec x\tan x \\\ \end{aligned}$$ Therefore, we have the differentiation of $3{{x}^{2}}-{{e}^{-3x}}+\sec x$ with respect to x as, $$6x+3{{e}^{-3x}}+\sec x\tan x$$ Note: To solve these type of questions it is important to remember that if $f\left( x \right)=g\left( x \right)+h\left( x \right)$ then $f'\left( x \right)=g'\left( x \right)+h'\left( x \right)$. Also, it should be noted $\dfrac{d}{dx}\left( {{e}^{-3x}} \right)$ have been found by using chain rule.