Solveeit Logo

Question

Question: Differentiate with respect to\[\theta \]: \[\theta {x^2} + 9{y^2}\]...

Differentiate with respect toθ\theta :
θx2+9y2\theta {x^2} + 9{y^2}

Explanation

Solution

It is easily solved by simple derivation with respect to θ\theta . Except x and y variables are constant so, x we will differentiate θ\theta only.

Complete step by step solution:
Let y=θx2+9y2y' = \theta {x^2} + 9{y^2}
Now, differentiate with respectθ\theta .So y and x are constant terms.
dydθ=ddθ(θx2+9y2)\dfrac{{dy'}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\theta {x^2} + 9{y^2}} \right)
dy,dθ=ddθ(θx2)+ddθ(9y2)\Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,\dfrac{d}{{d\theta }}\left( {\theta {x^2}} \right) + \dfrac{d}{{d\theta }}\left( {9{y^2}} \right) [ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))]\left[ {\because \,\,\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right)\,\, = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right] dy,dθ=x2ddθ(θ)+9y2ddθ(1) \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,{x^2}\dfrac{d}{{d\theta }}\left( \theta \right) + 9{y^2}\dfrac{d}{{d\theta }}\left( 1 \right)
dydθ=1×x2+9y2.0\Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 9{y^2}.0
dydθ=1×x2+0\Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 0

dy,dθ=x2+0 dy,dθ=x2  \Rightarrow \dfrac{{d{y^,}}}{{d\theta }}\, = {x^2} + 0 \\\ \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = {x^2} \\\

Additional information: Differentiation is a process of finding the derivative, or rate of change, of a function. Differentiation rules:
(i) The constant rule: for any fixed real number cc.\dfrac{d}{{dx}}\left\\{ {c.f(x)} \right\\} = c.\dfrac{d}{{dx}}\left\\{ {f(x)} \right\\}
(ii) The power rule: \dfrac{d}{{dx}}\left\\{ {{x^n}} \right\\} = n{x^{n - 1}}

Note: We can solve similar question by simple derivation as
(ddx(f(x))+g(x)=ddx(f(x))+ddx(g(x)))\left( {\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + g\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right)