Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. x the function:xx+xa+ax+aax^x+x^a+a^x+a^a, for some fixed a>0a>0 and x>0x>0

Answer

The correct answer is =xx(1+logx)+axa1+axloga=x^x(1+logx)+ax^{a-1}+a^xloga
Let y=xx+xa+ax+aay=x^x+x^a+a^x+a^a
Also,let xx=u,xa=v,ax=wx^x=u,x^a=v,a^x=w and aa=sa^a=s
y=u+v+w+s∴y=u+v+w+s
dydx=dudx+dvdx+dwdx+dsdx......(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}+\frac{dw}{dx}+\frac{ds}{dx} ......(1)
u=xxu=x^x
logu=logxx⇒logu=logx^x
logu=xlogx⇒logu=xlogx
Differentiating both sides with respect to xx,we obtain
1ududx=logx.ddx(x)+x.ddx(logx)\frac{1}{u}\frac{du}{dx}=logx.\frac{d}{dx}(x)+x.\frac{d}{dx}(logx)
dudx=u[logx.1+x.1x]⇒\frac{du}{dx}=u[logx.1+x.\frac{1}{x}]
dudx=xx[logx+1]=xx(1+logx).....(2)⇒\frac{du}{dx}=x^x[logx+1]=x^x(1+logx) .....(2)
v=xav=x^a
dvdx=ddx(xn)∴\frac{dv}{dx}=\frac{d}{dx}(x^n)
dvdx=axa1......(3)⇒\frac{dv}{dx}=ax^{a-1} ......(3)
w=axw=a^x
logw=logax⇒logw=loga^x
logw=xloga⇒logw=xloga
Differentiating both sides with respect to xx,we obtain
1w.dwdx=loga.ddx(x)\frac{1}{w}.\frac{dw}{dx}=loga.\frac{d}{dx}(x)
dwdx=wloga⇒\frac{dw}{dx}=w\,loga
dwdx=axloga......(4)⇒\frac{dw}{dx}=a^xloga ......(4)
s=aas=a^a
Since aa is constant,aaa^a is also a constant.
dsdx=0......(5)∴\frac{ds}{dx}=0 ......(5)
From (1),(2),(3),(4),and (5),we obtain
dydx=xx(1+logx)+axa1+axloga+0\frac{dy}{dx}=x^x(1+logx)+ax^{a-1}+a^xloga+0
=xx(1+logx)+axa1+axloga=x^x(1+logx)+ax^{a-1}+a^xloga