Question
Mathematics Question on Continuity and differentiability
Differentiate w.r.t. x the function:xx+xa+ax+aa, for some fixed a>0 and x>0
The correct answer is =xx(1+logx)+axa−1+axloga
Let y=xx+xa+ax+aa
Also,let xx=u,xa=v,ax=w and aa=s
∴y=u+v+w+s
⇒dxdy=dxdu+dxdv+dxdw+dxds......(1)
u=xx
⇒logu=logxx
⇒logu=xlogx
Differentiating both sides with respect to x,we obtain
u1dxdu=logx.dxd(x)+x.dxd(logx)
⇒dxdu=u[logx.1+x.x1]
⇒dxdu=xx[logx+1]=xx(1+logx).....(2)
v=xa
∴dxdv=dxd(xn)
⇒dxdv=axa−1......(3)
w=ax
⇒logw=logax
⇒logw=xloga
Differentiating both sides with respect to x,we obtain
w1.dxdw=loga.dxd(x)
⇒dxdw=wloga
⇒dxdw=axloga......(4)
s=aa
Since a is constant,aa is also a constant.
∴dxds=0......(5)
From (1),(2),(3),(4),and (5),we obtain
dxdy=xx(1+logx)+axa−1+axloga+0
=xx(1+logx)+axa−1+axloga