Question
Mathematics Question on Continuity and differentiability
Differentiate w.r.t. x the function:xx2−3+(x−3)x2,forx>3
The correct answer is: xx2−3.[xx2−3+2xlogx]+(x−3)x2[x−3x2+2xlog(x−3)]
Let y=xx2−3+(x−3)x2
Also,let u=xx2−3 and v=(x−3)x2
∴y=u+v
Differentiating both sides with respect to x,we obtain
dxdy=dxdu+dxdv.....(1)
u=xx2−3
∴logu=log(xx2−3)
logu=(x2−3)logx
Differentiating with respect to x,we obtain
u1.dxdu=logx.dxd(x2−3)+(x2−3).dxd(logx)
⇒u1dxdu=logx.2x+(x2−3).x1
⇒dxdu=xx2−3.[xx2−3+2xlogx]
Also,
v=(x−3)x2
∴logv=log(x−3)x2
⇒logv=x2log(x−3)
Differentiating both sides with respect to x,we obtain
v1.dxdv=log(x−3).dxd(x2)+x2.dxd[log(x−3)]
⇒v1dxdv=log(x−3).2x+x2.x1−3.dxd(x−3)
⇒dxdv=v[2xlog(x−3)+x−3x2.1]
⇒dxdv=(x−3)x2[x−3x2+2xlog(x−3)]
Substituting the expressions of dxdu and dxdv in equation (1), we obtain
dxdy=xx2−3.[xx2−3+2xlogx]+(x−3)x2[x−3x2+2xlog(x−3)]