Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. x the function:xx23+(x3)x2,forx>3x^{x^2-3}+(x-3)^{x^2},for\, x>3

Answer

The correct answer is: xx23.[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]x^{x^2-3}.[\frac{x^2-3}{x}+2xlogx]+(x-3)^{x^2}[\frac{x^2}{x-3}+2xlog(x-3)]
Let y=xx23+(x3)x2y=x^{x^2-3}+(x-3)^{x^2}
Also,let u=xx23u=x^{x^2-3} and v=(x3)x2v=(x-3)^{x^2}
y=u+v∴y=u+v
Differentiating both sides with respect to xx,we obtain
dydx=dudx+dvdx.....(1)\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} .....(1)
u=xx23u=x^{x^2-3}
logu=log(xx23)∴logu=log(x^{x^2-3})
logu=(x23)logxlogu=(x^2-3)logx
Differentiating with respect to xx,we obtain
1u.dudx=logx.ddx(x23)+(x23).ddx(logx)\frac{1}{u}.\frac{du}{dx}=logx.\frac{d}{dx}(x^2-3)+(x^2-3).\frac{d}{dx}(logx)
1ududx=logx.2x+(x23).1x⇒\frac{1}{u}\frac{du}{dx}=logx.2x+(x^2-3).\frac{1}{x}
dudx=xx23.[x23x+2xlogx]⇒\frac{du}{dx}=x^{x^2-3}.[\frac{x^2-3}{x}+2x\,logx]
Also,
v=(x3)x2v=(x-3)^{x^2}
logv=log(x3)x2∴logv=log(x-3)^{x^2}
logv=x2log(x3)⇒logv=x^2log(x-3)
Differentiating both sides with respect to xx,we obtain
1v.dvdx=log(x3).ddx(x2)+x2.ddx[log(x3)]\frac{1}{v}.\frac{dv}{dx}=log(x-3).\frac{d}{dx}(x^2)+x^2.\frac{d}{dx}[log(x-3)]
1vdvdx=log(x3).2x+x2.1x3.ddx(x3)⇒\frac{1}{v}\frac{dv}{dx}=log(x-3).2x+x^2.\frac{1}{x}-3.\frac{d}{dx}(x-3)
dvdx=v[2xlog(x3)+x2x3.1]⇒\frac{dv}{dx}=v[2xlog(x-3)+\frac{x^2}{x-3}.1]
dvdx=(x3)x2[x2x3+2xlog(x3)]⇒\frac{dv}{dx}=(x-3)^{x^2}[\frac{x^2}{x-3}+2xlog(x-3)]
Substituting the expressions of dudx\frac{du}{dx} and dvdx\frac{dv}{dx} in equation (1), we obtain
dydx=xx23.[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]\frac{dy}{dx}=x^{x^2-3}.[\frac{x^2-3}{x}+2xlogx]+(x-3)^{x^2}[\frac{x^2}{x-3}+2xlog(x-3)]