Question
Mathematics Question on Continuity and differentiability
Differentiate w.r.t. x the function:(sinx−cosx)(sinx−cosx),4π<x<43π
Answer
The correct answer is (sinx−cosx)(sinx−cosx)(cosx+sinx)[1+log(sinx−cosx)]
Let y=(sinx−cosx)(sinx−cosx)
Taking logarithm on both the sides,we obtain
logy=log[(sinx−cosx)(sinx−cosx)]
⇒logy=(sinx−cosx).log(sinx−cosx)
Differentiating both sides with respect to x, we obtain
y1dxdy=dxd[(sinx−cosx)log(sinx−cosx)]
⇒y1dxdy=log(sinx−cosx).dxd(sinx−cosx)+(sinx−cosx).dxdlog(sinx−cosx)
⇒y1dxdy=log(sinx−cosx).(cosx+sinx)+(sinx−cosx).(sinx−cosx)1.dxd(sinx−cosx)
⇒y1dxdy=(sinx−cosx)(sinx−cosx)[(cosx+sinx).log(sinx−cosx)+(cosx+sinx)]
∴dxdy=(sinx−cosx)(sinx−cosx)(cosx+sinx)[1+log(sinx−cosx)]