Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. x the function:(sinxcosx)(sinxcosx),π4<x<3π4(sinx-cosx)^{(sinx-cosx)},\frac{π}{4}<x<\frac{3π}{4}

Answer

The correct answer is (sinxcosx)(sinxcosx)(cosx+sinx)[1+log(sinxcosx)](sinx-cosx)^{(sinx-cosx)}(cosx+sinx)[1+log(sinx-cosx)]
Let y=(sinxcosx)(sinxcosx)y=(sinx-cosx)^{(sinx-cosx)}
Taking logarithm on both the sides,we obtain
logy=log[(sinxcosx)(sinxcosx)]log\,y=log[(sinx-cosx)^{(sinx-cosx)}]
logy=(sinxcosx).log(sinxcosx)⇒log\,y=(sin\,x-cos\,x).log(sin\,x-cos\,x)
Differentiating both sides with respect to xx, we obtain
1ydydx=ddx[(sinxcosx)log(sinxcosx)]\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}[(sin\,x-cos\,x)log(sinx-cosx)]
1ydydx=log(sinxcosx).ddx(sinxcosx)+(sinxcosx).ddxlog(sinxcosx)⇒\frac{1}{y}\frac{dy}{dx}=log(sinx-cosx).\frac{d}{dx}(sinx-cosx)+(sinx-cosx).\frac{d}{dx}log(sinx-cosx)
1ydydx=log(sinxcosx).(cosx+sinx)+(sinxcosx).1(sinxcosx).ddx(sinxcosx)⇒\frac{1}{y}\frac{dy}{dx}=log(sinx-cosx).(cosx+sinx)+(sinx-cosx).\frac{1}{(sinx-cosx)}.\frac{d}{dx}(sinx-cosx)
1ydydx=(sinxcosx)(sinxcosx)[(cosx+sinx).log(sinxcosx)+(cosx+sinx)]⇒\frac{1}{y}\frac{dy}{dx}=(sinx-cosx)^{(sinx-cosx)}[(cosx+sinx).log(sinx-cosx)+(cosx+sinx)]
dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[1+log(sinxcosx)]∴\frac{dy}{dx}=(sinx-cosx)^{(sinx-cosx)}(cosx+sinx)[1+log(sinx-cosx)]