Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: sin1(xx),0x1sin^{-1}(x\sqrt{x}),0≤x≤1

Answer

The correct answer is =32x1x3=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}
Let y=sin1(xx)y=sin^{-1}(x\sqrt{x})
Using chain rule,we obtain
dydx=ddx(sin1(xx))\frac{dy}{dx}=\frac{d}{dx}(sin^{-1}(x\sqrt{x}))
=11(xx)2×ddx(xx)=\frac{1}{\sqrt{1-(x\sqrt{x})^2}}\times\frac{d}{dx}(x\sqrt{x})
=11x3.ddx(x32)=\frac{1}{\sqrt{1-x^3}}.\frac{d}{dx}(x^{\frac{3}{2}})
=11x3×32.x12=\frac{1}{\sqrt{1-x^3}}\times\frac{3}{2}.x^{\frac{1}{2}}
=3x21x3=\frac{3\sqrt{x}}{2\sqrt{1-x^3}}
=32x1x3=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}