Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: (logx)logx,x>1(logx)^{logx},x>1

Answer

The correct answer is (logx)logx[1x+log(logx)x](logx)^{log\,x}[\frac{1}{x}+\frac{log(logx)}{x}]
Let y=(logx)logxy=(logx)^{logx}
Taking logarithm on both the sides,we obtain
logy=logx.log(logx)log\,y=log\,x.log(log\,x)
Differentiating both sides with respect to xx,we obtain
1ydydx=ddx[logx.xlog(logx)]\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}[log\,x.xlog(log\,x)]
1ydydx=log(logx).ddx(logx)+logx.ddx[log(logx)]⇒\frac{1}{y}\frac{dy}{dx}=log(logx).\frac{d}{dx}(logx)+logx.\frac{d}{dx}[log(logx)]
dydx=y[log(logx).1x+logx.1logx.ddx(logx)]⇒\frac{dy}{dx}=y[log(logx).\frac{1}{x}+logx.\frac{1}{logx}.\frac{d}{dx}(logx)]
dydx=y[1xlog(logx)+1x]⇒\frac{dy}{dx}=y[\frac{1}{x}log(log\,x)+\frac{1}{x}]
dydx=(logx)logx[1x+log(logx)x]∴\frac{dy}{dx}=(logx)^{log\,x}[\frac{1}{x}+\frac{log(logx)}{x}]