Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: cos1x22x+7,2<x<2\frac{cos^{-1}\frac{x}{2}}{\sqrt{2x+7}},-2<x<2

Answer

The correct answer is =[14x22x+7+cos1x2(2x+7)32]=-\bigg[\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}+\frac{cos^{-1}\frac{x}{2}}{(2x+7)^{\frac{3}{2}}}\bigg]
Let y=cos1x22x+7y=\frac{cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}
By quotient rule,we obtain
dydx=2x+7ddx(cos1x2)(cos1x2)ddx(2x+7)(2x+7)2\frac{dy}{dx}=\frac{\sqrt{2x+7}\frac{d}{dx}(cos^{-1}\frac{x}{2})-(cos^{-1}\frac{x}{2})\frac{d}{dx}(\sqrt{2x+7})}{\sqrt{(2x+7)^2}}
=2x+7[11(x2)2.ddx(x2)](cos1x2)122x+7.ddx(2x+7)2x+7=\frac{\sqrt{2x+7}\bigg[\frac{-1}{\sqrt{1-(\frac{x}{2})^2}}.\frac{d}{dx}(\frac{x}{2})\bigg]-(cos^{-1}\frac{x}{2})\frac{1}{2\sqrt{2x+7}}.\frac{d}{dx}(2x+7)}{2x+7}
=2x+714x2(cos1x2)222x+72x+7=\frac{\sqrt{2x+7}\frac{-1}{\sqrt{4-x^2}}-(cos^{-1}\frac{x}{2})\frac{2}{2\sqrt{2x+7}}}{2x+7}
=2x+74x2(2x+7)cos1x2(2x+7)(2x+7)=\frac{-\sqrt{2x+7}}{\sqrt{4-x^2}(2x+7)}-\frac{cos^{-1}\frac{x}{2}}{(\sqrt{2x+7})(2x+7)}
=[14x22x+7+cos1x2(2x+7)32]=-\bigg[\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}+\frac{cos^{-1}\frac{x}{2}}{(2x+7)^{\frac{3}{2}}}\bigg]