Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: cot1[1+sinx+1sinx1+sinx1sinx],0<x<x2cot^{-1}\bigg[\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx}-\sqrt{1-sinx}}\bigg],0<x<\frac{x}{2}

Answer

The correct answer is dydx=12\frac{dy}{dx}=\frac{1}{2}
Let y=cot1[1+sinx+1sinx1+sinx1sinx]......(1)y=cot^{-1}\bigg[\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx}-\sqrt{1-sinx}}\bigg]......(1)
Then,1+sinx+1sinx1+sinx1sinx\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx}-\sqrt{1-sinx}}
=(1+sinx+1sinx)2(1+sinx1sinx)(1+sinx+1sinx)=\frac{(\sqrt{1+sinx}+\sqrt{1-sinx)^2}}{(\sqrt{1+sinx}-\sqrt{1-sinx})(\sqrt{1+sinx}+\sqrt{1-sinx})}
=(1+sinx)+(1sinx)+2(1sinx)(1+sinx)(1+sinx)(1sinx)=\frac{(1+sinx)+(1-sinx)+2\sqrt{(1-sinx)(1+sinx)}}{(1+sinx)-(1-sinx)}
=2+21sin2x2sinx=\frac{2+2\sqrt{1-sin^2x}}{2sinx}
=1+cosxsinx=\frac{1+cosx}{sinx}
=2cos2x22sinx2cosx2=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}
=cotx2=cot\frac{x}{2}
y=cot1(cotx2)y=cot^{-1}(cot\frac{x}{2})
y=x2⇒y=\frac{x}{2}
dydx=12ddx(x)∴\frac{dy}{dx}=\frac{1}{2}\frac{d}{dx}(x)
dydx=12⇒\frac{dy}{dx}=\frac{1}{2}