Question
Mathematics Question on Continuity and differentiability
Differentiate w.r.t. x the function: cot−1[1+sinx−1−sinx1+sinx+1−sinx],0<x<2x
Answer
The correct answer is dxdy=21
Let y=cot−1[1+sinx−1−sinx1+sinx+1−sinx]......(1)
Then,1+sinx−1−sinx1+sinx+1−sinx
=(1+sinx−1−sinx)(1+sinx+1−sinx)(1+sinx+1−sinx)2
=(1+sinx)−(1−sinx)(1+sinx)+(1−sinx)+2(1−sinx)(1+sinx)
=2sinx2+21−sin2x
=sinx1+cosx
=2sin2xcos2x2cos22x
=cot2x
y=cot−1(cot2x)
⇒y=2x
∴dxdy=21dxd(x)
⇒dxdy=21