Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. x the function:cos(acosx+bsinx)cos(a\,cosx+b\,sinx),for some constant aa and bb.

Answer

The correct answer is =(asinxbcosx).sin(acosx+bsinx)=(a\,sin\,x-b\,cos\,x).sin(a\,cosx+b\,sinx)
Let y=cos(acosx+bsinx)y=cos(a\,cosx+b\,sinx)
By using chain rule, we obtain
dydx=ddxcos(acosx+bsinx)\frac{dy}{dx}=\frac{d}{dx}cos(a\,cosx+b\,sinx)
dydx=sin(acosx+bsinx).ddx(acosx+bsinx)⇒\frac{dy}{dx}=-sin(a\,cosx+b\,sinx).\frac{d}{dx}(a\,cosx+b\,sinx)
=sin(acosx+bsinx).[a(sinx)+bcosx]=-sin(a\,cosx+b\,sinx).[a(-sinx)+b\,cosx]
=(asinxbcosx).sin(acosx+bsinx)=(a\,sin\,x-b\,cos\,x).sin(a\,cosx+b\,sinx)