Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: (5x)3cos2x(5x)^{3cos2x}

Answer

The correct answer is (5x)3cos2x[3cos2xx6sin2xlog5x](5x)^{3cos2x}[\frac{3cos\,2x}{x}-6sin\,2x\,log\,5x]
Let y=(5x)3cos2xy=(5x)^{3cos2x}
Taking logarithm on both the sides, we obtain
logy=3cos2xlog5xlogy=3cos\,2x\,log\,5x
Differentiating both sides with respect to xx, we obtain
1ydydx=3[log5x.ddx(cos2x)+cos2xddx(log5x)]\frac{1}{y}\frac{dy}{dx}=3[log5x.\frac{d}{dx}(cos2x)+cos2x\frac{d}{dx}(log5x)]
dydx=3y[log5x(sin2x).ddx(2x)+cos2x.15x.ddx(5x)]⇒\frac{dy}{dx}=3y[log5x(-sin2x).\frac{d}{dx}(2x)+cos2x.\frac{1}{5x}.\frac{d}{dx}(5x)]
dydx=3y[2sin2xlog5x+cos2xx]⇒\frac{dy}{dx}=3y[-2sin2xlog5x+\frac{cos2x}{x}]
dydx=3y[3cos2xx6sin2xlog5x]⇒\frac{dy}{dx}=3y[\frac{3cos\,2x}{x}-6sin\,2x\,log\,5x]
dydx=(5x)3cos2x[3cos2xx6sin2xlog5x]∴\frac{dy}{dx}=(5x)^{3cos2x}[\frac{3cos\,2x}{x}-6sin\,2x\,log\,5x]