Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate w.r.t. xx the function: (3x29x+5)9(3x^2-9x+5)^9

Answer

The correct answer is =27(3x29x+5)8(2x3)=27(3x^2-9x+5)^8(2x-3)
Let y=(3x29x+5)9y=(3x^2-9x+5)^9
Using chain rule, we obtain
dydx=ddx(3x29x+5)9)\frac{dy}{dx}=\frac{d}{dx}(3x^2-9x+5)^9)
=9(3x29x+5)8.ddx(3x29x+5)=9(3x^2-9x+5)^8.\frac{d}{dx}(3x^2-9x+5)
=9(3x29x+5)8.(6x9)=9(3x^2-9x+5)^8.(6x-9)
=9(3x29x+5)8.3(2x3)=9(3x^2-9x+5)^8.3(2x-3)
=27(3x29x+5)8(2x3)=27(3x^2-9x+5)^8(2x-3)