Solveeit Logo

Question

Question: Differentiate using chain rule \[\dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right)\] . A.\[{e^x}\l...

Differentiate using chain rule ddx(exlogsin2x)\dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right) .
A.ex(logsin2x+2cot2x){e^x}\left( {\log \sin 2x + 2\cot 2x} \right)
B.ex(logcos2x+2cot2x){e^x}\left( {\log \cos 2x + 2\cot 2x} \right)
C.ex(logcos2x+cot2x){e^x}\left( {\log \cos 2x + \cot 2x} \right)
D.None of these

Explanation

Solution

First, we will use the product rule to find the differentiation of exlogsin2x{e^x}\log \sin 2x. We will take logsin2x\log \sin 2x as the second function and ex{e^x} as the first function. Then, we will apply the chain rule on logsin2x\log \sin 2x to find its differentiation. We will substitute this differentiation in the formula for product rule to find the answer.

Formulas used:
If we have to find the differentiation of a product of functions. We need to follow the product rule which states that differentiation of a product of functions is the sum of product of differentiation of 1st function with the second function and the product of differentiation of the 2nd function with 1st function.
The product rule for differentiation is given by:
1.(uv)=uv+uv\left( {uv} \right)' = u'v + uv'
2.ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}
3.ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}
4.ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
5.ddx(2x)=2\dfrac{d}{{dx}}\left( {2x} \right) = 2
6.cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x

Complete step-by-step answer:
We will substitute ex{e^x} for uu and logsin2x\log \sin 2x for vv in the 1st formula.
\Rightarrow ddx(exlogsin2x)=ddx(ex)logsin2x+exddx(logsin2x)\dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right) = \dfrac{d}{{dx}}\left( {{e^x}} \right)\log \sin 2x + {e^x}\dfrac{d}{{dx}}\left( {\log \sin 2x} \right) .
We will use the 2nd formula to simplify the equation:
\Rightarrow (1)ddx(exlogsin2x)=exlogsin2x+exddx(logsin2x)\left( 1 \right){\rm{ }}\dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right) = {e^x}\log \sin 2x + {e^x}\dfrac{d}{{dx}}\left( {\log \sin 2x} \right)
We know that according to the chain rule, differentiation of a function \Rightarrow h(x)=g(f(x))h\left( x \right) = g\left( {f\left( x \right)} \right) will be ddx(g(f(x)))ddx(f(x))ddx(x)\dfrac{d}{{dx}}\left( {g\left( {f\left( x \right)} \right)} \right) \cdot \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) \cdot \dfrac{d}{{dx}}\left( x \right).
We will take h(x)h\left( x \right) as logsin2x\log \sin 2x, log(x)\log \left( x \right) as g(x)g\left( x \right) and sin2x\sin 2x as f(x)f\left( x \right) and we will find differentiation of logsin2x\log \sin 2x. We will use the 3rd, 4th, 5th and 6th formula to find differentiation of logsin2x\log \sin 2x:
ddx(logsin2x)=ddx(logsin2x)ddx(sin2x)ddx(2x)ddx(logsin2x)=1sin2xcos2x2ddx(logsin2x)=2cos2xsin2x\Rightarrow \dfrac{d}{{dx}}\left( {\log \sin 2x} \right) = \dfrac{d}{{dx}}\left( {\log \sin 2x} \right) \cdot \dfrac{d}{{dx}}\left( {\sin 2x} \right) \cdot \dfrac{d}{{dx}}\left( {2x} \right)\\\\\Rightarrow \dfrac{d}{{dx}}\left( {\log \sin 2x} \right) = \dfrac{1}{{\sin 2x}} \cdot \cos 2x \cdot 2\\\\\Rightarrow \dfrac{d}{{dx}}\left( {\log \sin 2x} \right) = \dfrac{{2\cos 2x}}{{\sin 2x}}
We will substitute cot2x\cot 2x for cos2xsin2x\dfrac{{\cos 2x}}{{\sin 2x}} :
ddx(logsin2x)=2cot2x\Rightarrow \dfrac{d}{{dx}}\left( {\log \sin 2x} \right) = 2\cot 2x
We will substitute 2cot2x2\cot 2x for ddx(logsin2x)\dfrac{d}{{dx}}\left( {\log \sin 2x} \right)in the 1st equation:
ddx(exlogsin2x)=exlogsin2x+ex2cot2xddx(exlogsin2x)=ex(logsin2x+2cot2x)\Rightarrow \dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right) = {e^x}\log \sin 2x + {e^x} \cdot 2\cot 2x\\\\\Rightarrow \dfrac{d}{{dx}}\left( {{e^x}\log \sin 2x} \right) = {e^x}\left( {\log \sin 2x + 2\cot 2x} \right)
\Rightarrow The differentiation of exlogsin2x{e^x}\log \sin 2x is ex(logsin2x+2cot2x){e^x}\left( {\log \sin 2x + 2\cot 2x} \right).
Option A is the correct option.

Note: We know that any function h(x)h\left( x \right) is called a composite function if it is of the form g(f(x))g\left( {f\left( x \right)} \right). The chain rule of differentiation is used to find the derivative of such composite functions.