Solveeit Logo

Question

Question: Differentiate the given trigonometric expression. \(\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}...

Differentiate the given trigonometric expression.
sinxxcosxxsinx+cosx\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}

Explanation

Solution

Hint: To solve the above question, we will have to use the product rules and quotient rules of differentiation. According to product rule of differentiation, we have:
ddx(f(x).g(x))=g(x)[ddxf(x)]+f(x)[ddxg(x)]\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] + f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]
The quotient rule of differentiation says that:
ddx(f(x)g(x))=g(x)[ddxf(x)]f(x)[ddxg(x)](g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}

Complete step-by-step solution -
The function given in question for which we have to find derivative is in the form of f(x)g(x)\dfrac{{f\left( x \right)}}{{g\left( x \right)}} where f(x)=sinxxcosxf\left( x \right) = \sin x - x\cos x and g(x)=xsinx+cosxg\left( x \right) = xsinx + \cos x. To differentiate a function of the form f(x)g(x)\dfrac{{f\left( x \right)}}{{g\left( x \right)}}, we will use quotient rule of differentiation says that the derivative of the function f(x)g(x)\dfrac{{f\left( x \right)}}{{g\left( x \right)}} is calculated as shown below:
ddx(f(x)g(x))=g(x)[ddxf(x)]f(x)[ddxg(x)](g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}
In our question, we have to find the differentiation of sinxxcosxxsinx+cosx\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}. In our case, f(x)=sinxxcosxf\left( x \right) = \sin x - x\cos xand g(x)=xsinx+cosxg\left( x \right) = x\sin x + \cos x. Therefore, after applying quotient rule of differentiation, we get:
ddx(sinxxcosxxsinx+cosx)=(xsinx+cosx)ddx[sinxxcosx](sinxxcosx)[ddx(xsinx+cosx)](xsinx+cosx)2\dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = \dfrac{{\left( {x\sin x + \cos x} \right)\dfrac{d}{{dx}}\left[ {\sin x - x\cos x} \right] - \left( {\sin x - x\cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right)} \right]}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}…………………....(i)
Let sinxxcosx=Psinx - x\cos x = P and xsinx+cosx=qx\sin x + \cos x = q. Now first we will find the derivative of P with respect to x. Now according to sum rule of differentiation, we have,
dPdx=ddx(sinxxcosx)=ddx(sinx)ddx(xcosx)\dfrac{{dP}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {x\cos x} \right) …………….……(ii)
Now, we know that ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x. We will calculate the value of ddx(xcosx)\dfrac{d}{{dx}}\left( {x\cos x} \right) with the help of quotient rule:
ddx(f(x).g(x))=g(x).ddxf(x)+f(x).ddxg(x)\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right).\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right).\dfrac{d}{{dx}}g\left( x \right)
In our case, f(x)=xf\left( x \right) = x and g(x)=cosxg\left( x \right) = \cos x. So we have:
ddx(xcosx)=cosx.ddx(x)+x.ddx(cosx)\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\cos x} \right)
Now, because dxdx=1\dfrac{{dx}}{{dx}} = 1\, and ddxcosx=sinx\dfrac{d}{{dx}}\cos x = - \sin x
ddx(xcosx)=cosx.1+x(sinx)\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.1 + x\left( { - \sin x} \right)
ddx(xcosx)=cosxxsinx\Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x
Now we will put the respective values into (ii). After doing this:
ddx(sinxxcosx)=cosx(cosxxsinx)\Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \cos x - \left( {\cos x - x\sin x} \right)
ddx(sinxxcosx)=xsinx\Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = x\sin x ……….……(iii)
Now ,we will find the derivative of q with respect to x.
According to sum rule, we have:
dqdx=ddx(xsinx+cosx)=ddx(xsinx)+ddxcosx\dfrac{{dq}}{{dx}} = \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \dfrac{d}{{dx}}\left( {x\sin x} \right) + \dfrac{d}{{dx}}\cos x ……………….……(iv)
Know we know that ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x. The derivative of xsinxx\sin xcan be calculated with the help of quotient rule:
ddx(xsinx)=sinx.ddx(x)+x.ddx(sinx)\Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\sin x} \right)
Now, because dxdx=1\dfrac{{dx}}{{dx}} = 1\, and ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
ddx(xsinx)=sinx.1+x.cosx\Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.1 + x.\cos x
ddx(xsinx)=sinx+xcosx\Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x + x\cos x
Now, we will put the respective values into (iv)
ddx(xsinx+cosx)=sinx+xcosxsinx\Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \sin x + x\cos x - \sin x
ddx(xsinx+cosx)=xcosx\Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = x\cos x ……...……(v)
Now, we will put the values of derivatives from (iii) and (v) into (i)
ddx[sinxxcosxxsinx+cosx]=(xsinx+cosx)(xsinx)(sinxxcosx)(xcosx)(xsinx+cosx)2\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right] = \dfrac{{\left( {x\sin x + \cos x} \right)\left( {x\sin x} \right) - \left( {\sin x - x\cos x} \right)\left( {x\cos x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}
ddx(Pq)=x2sin2x+xcosxsinxxcosxsinx+x2cos2x(xsinx+cosx)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}{{\sin }^2}x + x\cos x\sin x - x\cos x\sin x + {x^2}{{\cos }^2}x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}
ddx(Pq)=x2(sin2+cos2x)(xsinx+cosx)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}\left( {{{\sin }^2} + {{\cos }^2}x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}
ddx(Pq)=x2(xsinx+cosx)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}
ddx(sinxxcosxxsinx+cosx)=(xxsinx+cosx)2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)^2}

Note: Here we need to keep in mind that the derivative which we have found above is not valid when the denominator is zero. Thus when xsinx+cosx=0x\sin x + \cos x = 0 the differentiation does not exist.