Solveeit Logo

Question

Question: Differentiate the given function with respect to \(x\): \({x^{{x^2} - 3}} + {\left( {x - 3} \right)^...

Differentiate the given function with respect to xx: xx23+(x3)x2{x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}} , for x>3x > 3

Explanation

Solution

The given equation xx23+(x3)x2{x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}} can be divided as sum of two separate functions xx23{x^{{x^2} - 3}} and (x3)x2{\left( {x - 3} \right)^{{x^2}}}. The differentiation of these terms can be calculated separately. The differentiation is done by taking log\log on both sides of the equation. The result for the two functions can be then added to form the solution.

Complete step-by-step answer:
Let the given function in the question xx23+(x3)x2{x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}} be represented by yy . The given function can be written as sum of two functions xx23{x^{{x^2} - 3}} and (x3)x2{\left( {x - 3} \right)^{{x^2}}}.
Let the function xx23{x^{{x^2} - 3}} be represented by pp, and the function (x3)x2{\left( {x - 3} \right)^{{x^2}}} represented by rr .
Thus the given function yy is sum of pp and rr.
The differentiation of pp with respect to xxcan be evaluated after taking log\log on both sides of the equation p=xx23p = {x^{{x^2} - 3}}.
logp=log(xx23)\log p = \log \left( {{x^{{x^2} - 3}}} \right)
On simplifying the above equation using the property log(ab)=bloga\log \left( {{a^b}} \right) = b\log a, we get
logp=(x23)logx\log p = \left( {{x^2} - 3} \right)\log x
Differentiating both sides with respect to xx to solve for dpdx\dfrac{{dp}}{{dx}}, we get
dlogpdx=d((x23)logx)dx 1pdpdx=(x23)d(logx)dx+logxd(x23)dx 1pdpdx=x23(1x)+logx(2x) 1pdpdx=x23x+2xlogx dpdx=p(x23x+2xlogx)  \dfrac{{d\log p}}{{dx}} = \dfrac{{d\left( {\left( {{x^2} - 3} \right)\log x} \right)}}{{dx}} \\\ \Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \left( {{x^2} - 3} \right)\dfrac{{d\left( {\log x} \right)}}{{dx}} + \log x\dfrac{{d\left( {{x^2} - 3} \right)}}{{dx}} \\\ \Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = {x^2} - 3\left( {\dfrac{1}{x}} \right) + \log x\left( {2x} \right) \\\ \Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \dfrac{{{x^2} - 3}}{x} + 2x\log x \\\ \Rightarrow \dfrac{{dp}}{{dx}} = p\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) \\\
Substituting the value p=xx23p = {x^{{x^2} - 3}} in the above equation, we get
dpdx=xx23(x23x+2xlogx)\dfrac{{dp}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right)
Similarly, taking log\log and solving for drdx\dfrac{{dr}}{{dx}} in the equation r=(x3)x2r = {\left( {x - 3} \right)^{{x^2}}}, we get
logr=log((x3)x2) logr=x2log(x3) dlogrdx=d(x2log(x3))dx 1rdrdx=x2d(log(x3))dx+log(x3)dx2dx 1rdrdx=x2(1x3)+2xlog(x3) drdx=r(x2(1x3)+2xlog(x3)) drdx=(x3)x2(x2x3+2xlog(x3))  \log r = \log \left( {{{\left( {x - 3} \right)}^{{x^2}}}} \right) \\\ \Rightarrow \log r = {x^2}\log \left( {x - 3} \right) \\\ \Rightarrow \dfrac{{d\log r}}{{dx}} = \dfrac{{d\left( {{x^2}\log \left( {x - 3} \right)} \right)}}{{dx}} \\\ \Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\dfrac{{d\left( {\log \left( {x - 3} \right)} \right)}}{{dx}} + \log \left( {x - 3} \right)\dfrac{{d{x^2}}}{{dx}} \\\ \Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right) \\\ \Rightarrow \dfrac{{dr}}{{dx}} = r\left( {{x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right)} \right) \\\ \Rightarrow \dfrac{{dr}}{{dx}} = {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right) \\\
For the known equation y=p+ry = p + r, differentiating the equation w.r.t. xx, we get
dydx=dpdx+drdx\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}
Substituting the value for the dpdx\dfrac{{dp}}{{dx}} and drdx\dfrac{{dr}}{{dx}} in the equation dydx=dpdx+drdx\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}, we get
dydx=xx23(x23x+2xlogx)+(x3)x2(x2x3+2xlog(x3))\dfrac{{dy}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)
The differentiation of xx23+(x3)x2{x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}} with respect to xx is xx23(x23x+2xlogx)+(x3)x2(x2x3+2xlog(x3)){x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)

Note: The calculation must be carried out separately for the two functions to avoid complexity. Taking log\log on both sides of the equation of pp and rr to find its derivative quickly. The differentiation can also be done by using the known formula dfgdx=(f)gd(ln(f).g)dx\dfrac{{d{f^g}}}{{dx}} = {\left( f \right)^g}\dfrac{{d\left( {\ln (f).g} \right)}}{{dx}}, where ff and gg are both function of xx.