Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
cos(x)cos(\sqrt x)

Answer

Let f(x )= cos(x)cos(\sqrt x)
Also, let u(x) = x\sqrt x
And, v(t) = cos t
Then, vou(x) = v(u(x))
= v(x\sqrt x)
= cos x
= f(x)

Clearly, f is a composite function of two functions, u and v, such that
t = u(x) = x\sqrt x
Then, dtdx\frac {dt}{dx}=ddx\frac {d}{dx}(x\sqrt x) = ddx\frac {d}{dx}(x12x^\frac 12)= 12x12\frac12 x^{-\frac 12} = 12x\frac {1}{2\sqrt x}

And dvdt\frac {dv}{dt} = ddt\frac {d}{dt}(cos t) = -sin t
=-sin(x\sqrt x)

By using chain rule, we obtain
dtdx\frac {dt}{dx} = dvdt\frac {dv}{dt} . dtdx\frac {dt}{dx}
=-sin(x\sqrt x) . 12x\frac {1}{2\sqrt x}
=-sin x2x\frac {sin\ \sqrt x}{2√x}

Alternate Method:

\frac {d}{dx}$$[cos (\sqrt x)] = -sin(x\sqrt x) . \frac {d}{dx}$$(\sqrt x)
= -sin(x\sqrt x) . ddx\frac {d}{dx}(x12x^{\frac 12})
= -sinx\sqrt x. \frac 12$$x^{-\frac 12}
= -sin x2x\frac {sin\ \sqrt x}{2√x}