Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
sin (ax+b)cos (cx+d)\frac {sin\ (ax+b)}{cos\ (cx+d)}

Answer

The given function is f(x) = sin (ax+b)cos (cx+d)\frac {sin\ (ax+b)}{cos\ (cx+d)} = g(x)h(x)\frac {g(x)}{h(x)}, where g(x) = sin (ax+b) and h(x) = cos (cx+d)
∴f' = ghghh2\frac {g'h-gh'}{h_2}
consider g(x) = sin (ax+b)
Let u(x) = ax+b, v(t) = sin t
Then, (vou)(x) = v(u(x)) = v(ax+b) = sin (ax+b) = g(x)
∴ g is a composite function of two functions, u and v

Put t = u(x) = ax+b
dvdt\frac {dv}{dt} = ddt\frac {d}{dt} (sin t) = cost = cos (ax+b)
dtdx\frac {dt}{dx} = ddx\frac {d}{dx}(ax+b) = ddx\frac {d}{dx}(ax) + ddx\frac {d}{dx}(b) = a+0 = a
Therefore, by chain rule, we obtain
g'=dgdx\frac {dg}{dx} = dvdt\frac {dv}{dt}.dtdx\frac {dt}{dx} = cos (ax+b).a = a cos (ax+b)
Consider h(x) = cos (cx+d)
Let p(x) = cx+d, q(y) = cos y
Then, (qop)(x) = q(p(x)) = q(cx+d) = cos (cx+d) = h(x)

∴h is a composite function of two functions, p and q

Put y = p(x) = cx+d
dqdy\frac {dq}{dy}=ddy\frac {d}{dy} (cos y) = -siny = -sin (cx+d)
dydx\frac {dy}{dx}=ddx\frac {d}{dx}(cx+d) =ddx\frac {d}{dx}(cx) + ddx\frac {d}{dx}(d) = c
Therefore, by chain rule, we obtain
h'=dhdx\frac {dh}{dx}=dqdy\frac {dq}{dy}.dydx\frac {dy}{dx} = -sin (cx+d) . c = -c sin (cx+d)
∴f'= acos (ax+b).cos(cx+d)sin (ax+b)csin (cx+d)[cos (cx+d)]2\frac {acos \ (ax+b) . cos (cx+d) - sin\ (ax+b){-c sin\ (cx+d)}}{[cos\ (cx+d)]^2}
=acos (ax+b)cos (cx+d)\frac {acos\ (ax+b)}{cos\ (cx+d)} + csin (ax+b).sin (cx+d)cos (cx+d)\frac {sin\ (cx+d)}{cos\ (cx+d)}.1cos (cx+d)\frac {1}{cos\ (cx+d)}
=acos (ax+b).sec (cx+d) + csin (ax+b).tan (cx+d).sec (cx+d)