Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
sec(tan(x))sec(tan(\sqrt x))

Answer

Let f(x) = sec (tan(x\sqrt x), u(x) = x\sqrt x, and v(t) = tan t and w(s) = sec s
Then, (wovou)(x) = w[v(u(x))] = w[v(√x)] = w(tan(x\sqrt x)) = sec (tan(x\sqrt x)) = f(x)
Thus, f is a composite function of three functions u, v, and w.
Put s = v(t) = tan and t = u(x) = x\sqrt x

Then, we obtain
dwds\frac {dw}{ds} = dds\frac {d}{ds} (sec s) = sec s.tan s = sec (tan t) . tan (tan t) [s = tan t]
= sec (tanx\sqrt x) .tan (tanx\sqrt x)
dsdt\frac {ds}{dt} = ddt\frac {d}{dt}(tan t) = sec2t = sec2x\sqrt x
dtdx\frac {dt}{dx} = dtdx\frac {dt}{dx}(x\sqrt x) = dtdx\frac {dt}{dx}(x12x^{\frac 12}) = 12\frac 12 . x121x^{\frac {1}{2}-1} = 12x\frac {1}{2\sqrt x}
Therefore by chain rule, dtdx\frac {dt}{dx} = dwds\frac {dw}{ds} . dsdt\frac {ds}{dt} . dtdx\frac {dt}{dx}
= sec (tanx\sqrt x) . tan (tanx\sqrt x) . sec2x\sqrt x . 12x\frac {1}{2\sqrt x}
= 12x\frac {1}{2\sqrt x} sec2x\sqrt x . sec (tanx\sqrt x) . tan (tanx\sqrt x)
= sec (tanx).tan (tanx).sec2x2x\frac {sec\ (tan\sqrt x) . tan\ (tan\sqrt x) . sec^2\sqrt x}{2\sqrt x}

Alternate method:

ddx\frac {d}{dx} [sec(tan(x\sqrt x))] = sec (tanx\sqrt x) . tan (tanx\sqrt x) . ddx\frac {d}{dx} (tanx\sqrt x)
= sec (tanx\sqrt x) . tan (tanx\sqrt x) . sec2x\sqrt x . \frac {d}{dx}$$(\sqrt x)
= sec (tanx\sqrt x) . tan (tanx\sqrt x) . sec2(x)(\sqrt x) . 12x\frac {1}{2\sqrt x}
= sec (tanx).tan (tanx).sec2x2x\frac {sec\ (tan\sqrt x) . tan\ (tan\sqrt x) . sec^2\sqrt x}{2\sqrt x}