Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
sin (ax+b)sin\ (ax+b)

Answer

Let f(x) = sin (ax+b), u(x) = ax+b, and v(t) = sint
Then, (vou)(x) = v(u(x)) = v(ax+b) = sin(ax+b) = f(x)
Thus, f is a composite of two functions.
Put t = u(x) = ax+b

Then, we obtain
dvdt\frac {dv}{dt}=ddt\frac {d}{dt}(sin t) = cost = cos (ax+b)
dtdx\frac {dt}{dx}=ddx\frac {d}{dx}(ax+b) = ddx\frac {d}{dx}(ax) + ddx\frac {d}{dx}(b) = a+0 = a
Therefore by chain rule, dfdx\frac {df}{dx}=dvdt\frac {dv}{dt}.dtdx\frac {dt}{dx} = cos (ax+b) . a = acos (ax+b)

Alternate method:

ddx\frac {d}{dx}[sin (ax+b)] = cos (ax+b) . ddx\frac {d}{dx}(ax+b)
=cos (ax+b) . [ddx\frac {d}{dx}(ax) + ddx\frac {d}{dx}(b)]
=cos (ax+b) . [a+0]
=a cos (ax+b)