Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
cos(sin x)cos(sin\ x)

Answer

Let f(x) = cos (sin x), u(x) = sin x, and v(t) = cos t
Then, (vou)(x) = v(u(x)) = v(sin x) = cos (sin x) = f(x)
Thus, f is a composite of two functions.
Put t = u(x) = sin x

Then, we obtain
dvdt\frac {dv}{dt} = ddt\frac {d}{dt}(cos t) = -sin t = -sin (sin x)
dtdx\frac {dt}{dx} = ddx\frac {d}{dx}(sin x) = cos x
Therefore by chain rule, dfdx\frac {df}{dx} = dvdt\frac {dv}{dt} . dtdx\frac {dt}{dx} = - sin (sin x) . cos x= -cos x . sin (sin x)

Alternate method:

ddx\frac {d}{dx}[cos (sin x)] = -sin (sin x) . ddx\frac {d}{dx}(sin x)
= -sin (sin x) . cos x
= - cos x. sin (sin x)