Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the functions with respect to x.
sin(x2+5)sin(x^2+5)

Answer

Let f(x) = sin (x2+5), u(x) = x2+5, and v(t) = sin t
Then, (vou)x = v(u(x)) = v(x2+5) = tan(x2+5) = f(x)
Thus, f is a composite of two functions.

Put t = u(x) = x2+5
Then we obtain
dvdt\frac {dv}{dt} = ddt\frac {d}{dt}(sin t) = cos t = cos (x2+5)
dtdx\frac {dt}{dx} = ddt\frac {d}{dt}(x2+5) = ddt\frac {d}{dt}(x2) + ddt\frac {d}{dt}(5) = 2x+0 = 2x
Therefore by chain rule, dfdx\frac {df}{dx} = dvdt\frac {dv}{dt} . dtdx\frac {dt}{dx} = cos (x2+5) . 2x = 2x cos(x2+5)

Alternate method:
ddx\frac {d}{dx}[sin (x2+5)] = cos (x2+5) . ddx\frac {d}{dx}(x2+5)
=cos (x2+5) . [ddx\frac {d}{dx}(x2) + ddx\frac {d}{dx}(5)]
=cos (x2+5) . [2x + 0]
=2x cos (x2+5)