Solveeit Logo

Question

Question: Differentiate the function with respect to \[x\]: \[\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}\]...

Differentiate the function with respect to xx: sin(ax+b)cos(cx+d)\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}

Explanation

Solution

To differentiate the functions of this type, we will use the quotient rule. According to quotient rule, ddx(f(x)g(x))=(g(x)×f(x))(f(x)×g(x))(g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{\left( {g(x) \times f'(x)} \right) - \left( {f(x) \times g'(x)} \right)}}{{{{\left( {g(x)} \right)}^2}}}, where f(x)=ddx(f(x))f'(x) = \dfrac{d}{{dx}}\left( {f(x)} \right). Also, we see that f(x)f(x) and g(x)g(x) are composite functions. We will again use chain rule to find their derivatives and then substitute in the formula for quotient rule. According to chain rule, ddx(mon(x))=m(n(x))×n(x)\dfrac{d}{{dx}}\left( {mon(x)} \right) = m'(n(x)) \times n'(x), where m(x)=ddx(m(x))m'(x) = \dfrac{d}{{dx}}\left( {m(x)} \right). After finding the values of these composite functions, we will then substitute back in the formula for the quotient rule.

Complete answer: We need to differentiate sin(ax+b)cos(cx+d)\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}} with respect to xx. i.e. we need to find ddx(sin(ax+b)cos(cx+d))\dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right).
Let sin(ax+b)=f(x)(1)\sin (ax + b) = f(x) - - - - - - (1)
cos(cx+d)=g(x)(2)\cos (cx + d) = g(x) - - - - - - (2)
Now Putting these values in quotient rule, we have
ddx(f(x)g(x))=ddx(sin(ax+b)cos(cx+d))\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right)
We know, ddx(f(x)g(x))=(g(x)×f(x))(f(x)×g(x))(g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{\left( {g(x) \times f'(x)} \right) - \left( {f(x) \times g'(x)} \right)}}{{{{\left( {g(x)} \right)}^2}}}, where f(x)=ddx(f(x))f'(x) = \dfrac{d}{{dx}}\left( {f(x)} \right). So,
ddx(f(x)g(x))=ddx(sin(ax+b)cos(cx+d))=(cos(cx+d)×ddx(sin(ax+b)))(sin(ax+b)×ddx(cos(cx+d)))(cos(cx+d))2(2)\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( {\cos (cx + d) \times \dfrac{d}{{dx}}\left( {\sin (ax + b)} \right)} \right) - \left( {\sin (ax + b) \times \dfrac{d}{{dx}}\left( {\cos (cx + d)} \right)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}} - - (2)
We will first find ddx(sin(ax+b))\dfrac{d}{{dx}}\left( {\sin (ax + b)} \right)
We see that this function is the composition of two functions.
Let m(x)=sinx(3)m(x) = \sin x - - - - - - (3)
And n(x)=ax+b(4)n(x) = ax + b - - - - - - (4)
Hence, mon(x)=m(n(x))=sin(n(x))=sin(ax+b)mon(x) = m\left( {n(x)} \right) = \sin \left( {n(x)} \right) = \sin \left( {ax + b} \right)
Using chain rule, we have
ddx(mon(x))=m(n(x))×n(x)\dfrac{d}{{dx}}\left( {mon(x)} \right) = m'(n(x)) \times n'(x), where m(x)=ddx(m(x))(5)m'(x) = \dfrac{d}{{dx}}\left( {m(x)} \right) - - - - - - (5)
Hence, ddx(mon(x))=ddx(sin(ax+b))(6)\dfrac{d}{{dx}}\left( {mon(x)} \right) = \dfrac{d}{{dx}}\left( {\sin (ax + b)} \right) - - - - - - (6).
First of all, finding m(x)m'(x)
m(x)=ddx(m(x))=ddx(sinx)m'(x) = \dfrac{d}{{dx}}\left( {m(x)} \right) = \dfrac{d}{{dx}}\left( {\sin x} \right)
Using the derivative formula for sinx\sin x, we have
m(x)=ddx(m(x))=ddx(sinx)=cosxm'(x) = \dfrac{d}{{dx}}\left( {m(x)} \right) = \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
Hence, m(x)=cosxm'(x) = \cos x
Replacing xx with n(x)n(x), we have
m(n(x))=cos(n(x))m'(n(x)) = \cos (n(x))
Using (4), we get
m(n(x))=cos(ax+b)(7)m'\left( {n\left( x \right)} \right) = \cos \left( {ax + b} \right) - - - - - - (7)
Now, finding n(x)n'(x), we have
n(x)=ddx(n(x))=ddx(ax+b)n'(x) = \dfrac{d}{{dx}}\left( {n\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {ax + b} \right)
Now Separating the terms to be differentiated,
n(x)=ddx(n(x))=ddx(ax+b)n'(x) = \dfrac{d}{{dx}}\left( {n\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {ax + b} \right)
=ddx(ax)+ddx(b)= \dfrac{d}{{dx}}\left( {ax} \right) + \dfrac{d}{{dx}}\left( b \right)
We know, ddx(ax)=a\dfrac{d}{{dx}}\left( {ax} \right) = a and ddx(b)=0\dfrac{d}{{dx}}\left( b \right) = 0
Hence, n(x)=ddx(n(x))=ddx(ax+b)n'(x) = \dfrac{d}{{dx}}\left( {n\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {ax + b} \right)
=ddx(ax)+ddx(b)= \dfrac{d}{{dx}}\left( {ax} \right) + \dfrac{d}{{dx}}\left( b \right)
=a+0= a + 0
=a= a
Hence, we get n(x)=a(8)n'(x) = a - - - - - - (8)
Using (5), (6), (7) and (8), we get
ddx(mon(x))=m(n(x))×n(x)\dfrac{d}{{dx}}\left( {mon(x)} \right) = m'(n(x)) \times n'(x)
ddx(sin(ax+b))=cos(ax+b)×a\dfrac{d}{{dx}}\left( {\sin \left( {ax + b} \right)} \right) = \cos \left( {ax + b} \right) \times a
ddx(sin(ax+b))=acos(ax+b)(9)\dfrac{d}{{dx}}\left( {\sin \left( {ax + b} \right)} \right) = a\cos \left( {ax + b} \right) - - - - - - (9)
Now, finding ddx(cos(ax+b))\dfrac{d}{{dx}}\left( {\cos \left( {ax + b} \right)} \right)
Let i(x)=cosx(10)i(x) = \cos x - - - - - - (10)
And j(x)=cx+d(11)j(x) = cx + d - - - - - - (11)
So, ioj(x)=i(j(x))=cos(j(x))=cos(cx+d)(12)ioj(x) = i\left( {j\left( x \right)} \right) = \cos \left( {j\left( x \right)} \right) = \cos \left( {cx + d} \right) - - - - - - (12)
Using chain rule, ddx(ioj(x))=i(j(x))×j(x)(13)\dfrac{d}{{dx}}\left( {ioj\left( x \right)} \right) = i'\left( {j\left( x \right)} \right) \times j'(x) - - - - - - (13)
First of all, finding i(x)i'(x)
i(x)=ddx(i(x))=ddx(cosx)i'(x) = \dfrac{d}{{dx}}\left( {i(x)} \right) = \dfrac{d}{{dx}}\left( {\cos x} \right)
Using derivative formula for cosx\cos x, we have
i(x)=ddx(i(x))=ddx(cosx)i'(x) = \dfrac{d}{{dx}}\left( {i(x)} \right) = \dfrac{d}{{dx}}\left( {\cos x} \right)
=sinx= - \sin x
Hence, i(x)=sinxi'(x) = - \sin x
Replacing xx with j(x)j\left( x \right), we get
i(j(x))=sin(j(x))i'\left( {j\left( x \right)} \right) = - \sin \left( {j\left( x \right)} \right)
Using (11), we get
i(j(x))=sin(j(x))=sin(cx+d)(14)i'\left( {j\left( x \right)} \right) = - \sin \left( {j\left( x \right)} \right) = - \sin \left( {cx + d} \right) - - - - - - - (14)
Now, finding j(x)j'(x).
j(x)=ddx(j(x))=ddx(cx+d)j'(x) = \dfrac{d}{{dx}}\left( {j\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {cx + d} \right)
Now, separating the terms to be differentiated, we have
j(x)=ddx(j(x))=ddx(cx+d)j'(x) = \dfrac{d}{{dx}}\left( {j\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {cx + d} \right)
=ddx(cx)+ddx(d)= \dfrac{d}{{dx}}\left( {cx} \right) + \dfrac{d}{{dx}}\left( d \right)
We know, ddx(cx)=c\dfrac{d}{{dx}}\left( {cx} \right) = c and ddx(d)=0\dfrac{d}{{dx}}\left( d \right) = 0
So,
j(x)=ddx(j(x))=ddx(cx+d)j'(x) = \dfrac{d}{{dx}}\left( {j\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {cx + d} \right)
=ddx(cx)+ddx(d)= \dfrac{d}{{dx}}\left( {cx} \right) + \dfrac{d}{{dx}}\left( d \right)
=c+0= c + 0
=c= c
Hence, we get j(x)=c(15)j'(x) = c - - - - - - (15)
Using (12), (13), (14) and (15)
ddx(ioj(x))=i(j(x))×j(x)\dfrac{d}{{dx}}\left( {ioj\left( x \right)} \right) = i'\left( {j\left( x \right)} \right) \times j'(x)
ddx(cos(cx+d))=sin(cx+d)×c\dfrac{d}{{dx}}\left( {\cos \left( {cx + d} \right)} \right) = - \sin \left( {cx + d} \right) \times c
ddx(cos(cx+d))=csin(cx+d)(16)\Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {cx + d} \right)} \right) = - c\sin \left( {cx + d} \right) - - - - - - (16)
Now, using (9) and (16) in (2), we get
ddx(f(x)g(x))=ddx(sin(ax+b)cos(cx+d))=(cos(cx+d)×ddx(sin(ax+b)))(sin(ax+b)×ddx(cos(cx+d)))(cos(cx+d))2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( {\cos (cx + d) \times \dfrac{d}{{dx}}\left( {\sin (ax + b)} \right)} \right) - \left( {\sin (ax + b) \times \dfrac{d}{{dx}}\left( {\cos (cx + d)} \right)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
ddx(sin(ax+b)cos(cx+d))=(cos(cx+d)×acos(ax+b))(sin(ax+b)×(csin(cx+d)))(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( {\cos (cx + d) \times a\cos (ax + b)} \right) - \left( {\sin (ax + b) \times \left( { - c\sin (cx + d)} \right)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
Taking out the constant terms outside the brackets,
ddx(sin(ax+b)cos(cx+d))=(a)(cos(cx+d)×cos(ax+b))(c)(sin(ax+b)×sin(cx+d))(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( a \right)\left( {\cos (cx + d) \times \cos (ax + b)} \right) - \left( { - c} \right)\left( {\sin (ax + b) \times \sin (cx + d)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
ddx(sin(ax+b)cos(cx+d))=(a)(cos(cx+d)×cos(ax+b))+(c)(sin(ax+b)×sin(cx+d))(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( a \right)\left( {\cos (cx + d) \times \cos (ax + b)} \right) + \left( c \right)\left( {\sin (ax + b) \times \sin (cx + d)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
Separating the denominator, we get
ddx(sin(ax+b)cos(cx+d))=(a)(cos(cx+d)×cos(ax+b))(cos(cx+d))2+(c)(sin(ax+b)×sin(cx+d))(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( a \right)\left( {\cos (cx + d) \times \cos (ax + b)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}} + \dfrac{{\left( c \right)\left( {\sin (ax + b) \times \sin (cx + d)} \right)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
Cancelling out and Separating the terms, we get
ddx(sin(ax+b)cos(cx+d))=(a)(cos(ax+b))(cos(cx+d))+(c)(sin(ax+b))×sin(cx+d)(cos(cx+d))2\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \dfrac{{\left( a \right)\left( {\cos (ax + b)} \right)}}{{\left( {\cos (cx + d)} \right)}} + \left( c \right)\left( {\sin (ax + b)} \right) \times \dfrac{{\sin (cx + d)}}{{{{\left( {\cos (cx + d)} \right)}^2}}}
ddx(sin(ax+b)cos(cx+d))=(a)(cos(ax+b))×1(cos(cx+d))+(c)(sin(ax+b))×sin(cx+d)cos(cx+d)×1cos(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \left( a \right)\left( {\cos (ax + b)} \right) \times \dfrac{1}{{\left( {\cos (cx + d)} \right)}} + \left( c \right)\left( {\sin (ax + b)} \right) \times \dfrac{{\sin (cx + d)}}{{\cos (cx + d)}} \times \dfrac{1}{{\cos (cx + d)}}
Now, we know, sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x , 1cosx=secx\dfrac{1}{{\cos x}} = \sec x. So, by using this, we get
ddx(sin(ax+b)cos(cx+d))=(a)(cos(ax+b))×sec(cx+d)+(c)(sin(ax+b))×tan(cx+d)×sec(cx+d)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}}} \right) = \left( a \right)\left( {\cos (ax + b)} \right) \times \sec \left( {cx + d} \right) + \left( c \right)\left( {\sin (ax + b)} \right) \times \tan \left( {cx + d} \right) \times \sec \left( {cx + d} \right)
Hence, derivative of sin(ax+b)cos(cx+d)\dfrac{{\sin (ax + b)}}{{\cos (cx + d)}} with respect to xx is (a)(cos(ax+b))×sec(cx+d)+(c)(sin(ax+b))×tan(cx+d)×sec(cx+d)\left( a \right)\left( {\cos (ax + b)} \right) \times \sec \left( {cx + d} \right) + \left( c \right)\left( {\sin (ax + b)} \right) \times \tan \left( {cx + d} \right) \times \sec \left( {cx + d} \right)

Note:
Firstly, we need to see the type of function we are given to differentiate. If the function is composed of two or more functions, always, chain rule is applied. Also, the formula for quotient rule needs to be remembered correctly. We usually put plus signs in between but in quotient rule, it is minus sign. Also, while solving for the composite functions, we need to write the composition of the function carefully.