Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x
(xcosx)x+(xsinx)x1
The correct answer is dxdy=(xcosx)x[1−xtanx+log(xcosx)]+(xsinx)x1[x2xcotx+1−log(xsinx)]
Let y=(xcosx)x+(xsinx)x1
Also,let u=(xcosx)x and v=(xsinx)x1
∴y=u+v
⇒dxdy=dxdu+dxdv....(1)
u=(xcosx)x
⇒logu=log((xcosx)x)
⇒logu=x(log(xcosx)
⇒logu=x[logx+logcosx]
⇒logu=xlogx+xlogcosx
Differentiating both sides with respect to x,we obtain
⇒u1dxdu=dxd(xlogx)+dxd(xlogcosx)
⇒dxdu=u[logx.dxd(x)+x.dxd(logx)+logcosx.dxd(x)+x.dxd(logcosx)]
⇒dxdu=(xcosx)x[(logx.1+x.x1)+logcosx.1+x.cosx1.dxd(cosx)]
⇒dxdu=(xcosx)x[(logx+1)+logcosx+cosxx.(−sinx)]
⇒dxdu=(xcosx)x[(1+logx)+logcosx−xtanx]
⇒dxdu=(xcosx)x[1−xtanx+(logxlogcosx)]
⇒dxdu=(xcosx)x[1−xtanx+log(xcosx)]..(2)
v=(xsinx)x1
⇒logv=log((xsinx)x1)
⇒logv=x1log(xsinx)
⇒logv=x1(logx+logsinx)
⇒logv=x1logx+x1logsinx
Differentiating both sides with respect to x, we obtain
v1dxdv=dxd(x1logx)+dxd[(x1log(sinx))]
⇒v1dxdv=[logx.dxd(x1)+x1.dxd(logx)]+[log(sinx).dxd(x1)+x1.dxdlog(sinx)]
⇒v1dxdv=[logx.(x2−1)+x1.x1]+[log(sinx).(x2−1)+x1.sinx1.dxd(sinx)]
⇒v1dxdv=x21(1−logx)+[x2−log(sinx)+xsinx1.cosx]
⇒v1dxdv=(xsinx)x1[x21−logx+x2−log(sinx)+xcotx]
⇒v1dxdv=(xsinx)x1[x21−logx−log(sinx)+xcotx]
⇒v1dxdv=(xsinx)x1[x21−log(xsinx)+xcotx]...(3)
Therefore,from (1),(2),and(3),we obtain
dxdy=(xcosx)x[1−xtanx+log(xcosx)]+(xsinx)x1[x2xcotx+1−log(xsinx)]