Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx
(xcosx)x+(xsinx)1x(xcosx)^x+(xsinx)^{\frac{1}{x}}

Answer

The correct answer is dydx=(xcosx)x[1xtanx+log(xcosx)]+(xsinx)1x[xcotx+1log(xsinx)x2]\frac{dy}{dx}=(xcosx)^x[1-xtanx+log(xcosx)]+(xsinx)^{\frac{1}{x}}[\frac{xcotx+1-log(xsinx)}{x^2}]
Let y=(xcosx)x+(xsinx)1xy=(xcosx)^x+(xsinx)^{\frac{1}{x}}
Also,let u=(xcosx)xu=(xcosx)^x and v=(xsinx)1xv=(xsinx)^{\frac{1}{x}}
y=u+v∴y=u+v
dydx=dudx+dvdx....(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ....(1)
u=(xcosx)xu=(xcosx)^x
logu=log((xcosx)x)⇒logu=log((xcosx)^x)
logu=x(log(xcosx)⇒logu=x(log(xcosx)
logu=x[logx+logcosx]⇒logu=x[logx+logcosx]
logu=xlogx+xlogcosx⇒logu=xlogx+xlogcosx
Differentiating both sides with respect to xx,we obtain
1ududx=ddx(xlogx)+ddx(xlogcosx)⇒\frac{1}{u}\frac{du}{dx}=\frac{d}{dx}(xlogx)+\frac{d}{dx}(xlogcosx)
dudx=u[logx.ddx(x)+x.ddx(logx)+logcosx.ddx(x)+x.ddx(logcosx)]⇒\frac{du}{dx}=u[{logx.\frac{d}{dx}(x)+x.\frac{d}{dx}(logx)}+{logcosx.\frac{d}{dx}(x)+x.\frac{d}{dx}(logcosx})]
dudx=(xcosx)x[(logx.1+x.1x)+logcosx.1+x.1cosx.ddx(cosx)]⇒\frac{du}{dx}=(xcosx)^x[(logx.1+x.\frac{1}{x})+{logcosx.1+x.\frac{1}{cosx}.\frac{d}{dx}(cosx)}]
dudx=(xcosx)x[(logx+1)+logcosx+xcosx.(sinx)]⇒\frac{du}{dx}=(xcosx)^x[(logx+1)+{logcosx+\frac{x}{cosx}.(-sinx)}]
dudx=(xcosx)x[(1+logx)+logcosxxtanx]⇒\frac{du}{dx}=(xcosx)^x[(1+logx)+logcosx-xtanx]
dudx=(xcosx)x[1xtanx+(logxlogcosx)]⇒\frac{du}{dx}=(xcosx)^x[1-xtanx+(logxlogcosx)]
dudx=(xcosx)x[1xtanx+log(xcosx)]..(2)⇒\frac{du}{dx}=(xcosx)^x[1-xtanx+log(xcosx)] ..(2)
v=(xsinx)1xv=(xsinx)^{\frac{1}{x}}
logv=log((xsinx)1x)⇒logv=log((xsinx)^{\frac{1}{x}})
logv=1xlog(xsinx)⇒logv=\frac{1}{x}log(xsinx)
logv=1x(logx+logsinx)⇒logv=\frac{1}{x}(logx+logsinx)
logv=1xlogx+1xlogsinx⇒logv=\frac{1}{x}logx+\frac{1}{x}logsinx
Differentiating both sides with respect to xx, we obtain
1vdvdx=ddx(1xlogx)+ddx[(1xlog(sinx))]\frac{1}{v}\frac{dv}{dx}=\frac{d}{dx}(\frac{1}{x}logx)+\frac{d}{dx}[(\frac{1}{x}log(sinx))]
1vdvdx=[logx.ddx(1x)+1x.ddx(logx)]+[log(sinx).ddx(1x)+1x.ddxlog(sinx)]⇒\frac{1}{v}\frac{dv}{dx}=[logx.\frac{d}{dx}(\frac{1}{x})+\frac{1}{x}.\frac{d}{dx}(logx)]+[log(sinx).\frac{d}{dx}(\frac{1}{x})+\frac{1}{x}.\frac{d}{dx}{log(sinx)}]
1vdvdx=[logx.(1x2)+1x.1x]+[log(sinx).(1x2)+1x.1sinx.ddx(sinx)]⇒\frac{1}{v}\frac{dv}{dx}=[logx.(\frac{-1}{x^2})+\frac{1}{x}.\frac{1}{x}]+[log(sinx).(\frac{-1}{x^2})+\frac{1}{x}.\frac{1}{sinx}.\frac{d}{dx}(sinx)]
1vdvdx=1x2(1logx)+[log(sinx)x2+1xsinx.cosx]⇒\frac{1}{v}\frac{dv}{dx}=\frac{1}{x^2}(1-logx)+[\frac{-log(sinx)}{x^2}+\frac{1}{xsinx}.cosx]
1vdvdx=(xsinx)1x[1logxx2+log(sinx)+xcotxx2]⇒\frac{1}{v}\frac{dv}{dx}=(xsinx)^{\frac{1}{x}}[\frac{1-logx}{x^2}+\frac{-log(sinx)+xcotx}{x^2}]
1vdvdx=(xsinx)1x[1logxlog(sinx)+xcotxx2]⇒\frac{1}{v}\frac{dv}{dx}=(xsinx)^{\frac{1}{x}}[\frac{1-logx-log(sinx)+xcotx}{x^2}]
1vdvdx=(xsinx)1x[1log(xsinx)+xcotxx2]...(3)⇒\frac{1}{v}\frac{dv}{dx}=(xsinx)^{\frac{1}{x}}[\frac{1-log(xsinx)+xcotx}{x^2}] ...(3)
Therefore,from (1),(2),and(3),we obtain
dydx=(xcosx)x[1xtanx+log(xcosx)]+(xsinx)1x[xcotx+1log(xsinx)x2]\frac{dy}{dx}=(xcosx)^x[1-xtanx+log(xcosx)]+(xsinx)^{\frac{1}{x}}[\frac{xcotx+1-log(xsinx)}{x^2}]