Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x
xxcosx+x2−1x2+1
The correct answer is dxdy=xxcosx[cosx(1+logx)−xsinxlogx]−(x2−1)24x
Let y=xxcosx+x2−1x2+1
Also,let u=xxcosx and v=x2−1x2+1
∴y=u+v
⇒dxdy=dxdu+dxdv....(1)
u=xxcosx
⇒logu=log(xxcosx)
⇒logu=xcosxlogx
Differentiating both sides with respect to x,we obtain
⇒u1dxdu=dxd(x).cosx.log(x)+x.dxd(cosx).logx+xcosx.dxd[logx]
⇒dxdu=u[1.cosx.logx+x.(−sinx)logx+xcosx.x1]
⇒dxdu=xxcosx[cosxlogx−xsinxlogx+cosx]
⇒dxdu=xxcosx[cosx(1+logx)−xsinxlogx]..(2)
v=x2−1x2+1
⇒logv=log(x2+1)−log(x2−1)
Differentiating both sides with respect to x, we obtain
v1dxdv=x2+12x−x2−12x
⇒dxdv=v[(x2+1)(x2−1)2x(x2−1)−2x(x2+1)]
⇒dxdv=x2−1x2+1×[(x2+1)(x2−1)−4x]
⇒dxdv=(x2−1)2−4x....(3)
Therefore,from (1),(2),and(3),we obtain
dxdy=xxcosx[cosx(1+logx)−xsinxlogx]−(x2−1)24x