Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx
xxcosx+x2+1x21x^{xcos\,x}+\frac{x^2+1}{x^2-1}

Answer

The correct answer is dydx=xxcosx[cosx(1+logx)xsinxlogx]4x(x21)2\frac{dy}{dx}=x^{xcosx}[cosx(1+logx)-xsinx\,logx]-\frac{4x}{(x^2-1)^2}
Let y=xxcosx+x2+1x21y=x^{xcos\,x}+\frac{x^2+1}{x^2-1}
Also,let u=xxcosxu=x^{xcos\,x} and v=x2+1x21v=\frac{x^2+1}{x^2-1}
y=u+v∴y=u+v
dydx=dudx+dvdx....(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ....(1)
u=xxcosxu=x^{xcos\,x}
logu=log(xxcosx)⇒log\,u=log(x^{xcos\,x})
logu=xcosxlogx⇒log\,u=xcos\,x\,logx
Differentiating both sides with respect to xx,we obtain
1ududx=ddx(x).cosx.log(x)+x.ddx(cosx).logx+xcosx.ddx[logx]⇒\frac{1}{u}\frac{du}{dx}=\frac{d}{dx}(x).cosx.log(x)+x.\frac{d}{dx}(cosx).logx+xcosx.\frac{d}{dx}[logx]
dudx=u[1.cosx.logx+x.(sinx)logx+xcosx.1x]⇒\frac{du}{dx}=u[1.cosx.logx+x.(-sinx)logx+xcosx.\frac{1}{x}]
dudx=xxcosx[cosxlogxxsinxlogx+cosx]⇒\frac{du}{dx}=x^{xcosx}[cosx\,logx-xsinx\,logx+cosx]
dudx=xxcosx[cosx(1+logx)xsinxlogx]..(2)⇒\frac{du}{dx}=x^{xcosx}[cosx(1+logx)-xsinx\,logx] ..(2)
v=x2+1x21v=\frac{x^2+1}{x^2-1}
logv=log(x2+1)log(x21)⇒log\,v=log(x^2+1)-log(x^2-1)
Differentiating both sides with respect to xx, we obtain
1vdvdx=2xx2+12xx21\frac{1}{v}\frac{dv}{dx}=\frac{2x}{x^2+1}-\frac{2x}{x^2-1}
dvdx=v[2x(x21)2x(x2+1)(x2+1)(x21)]⇒\frac{dv}{dx}=v[\frac{2x(x^2-1)-2x(x^2+1)}{(x^2+1)(x^2-1)}]
dvdx=x2+1x21×[4x(x2+1)(x21)]⇒\frac{dv}{dx}=\frac{x^2+1}{x^2-1}\times [\frac{-4x}{(x^2+1)(x^2-1)}]
dvdx=4x(x21)2....(3)⇒\frac{dv}{dx}=\frac{-4x}{(x^2-1)^2} ....(3)
Therefore,from (1),(2),and(3),we obtain
dydx=xxcosx[cosx(1+logx)xsinxlogx]4x(x21)2\frac{dy}{dx}=x^{xcosx}[cosx(1+logx)-xsinx\,logx]-\frac{4x}{(x^2-1)^2}