Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx:
xsinx+(sinx)cosxx^{sin\,x}+(sin\,x)^{cos\,x}

Answer

The correct answer is dydx=xsinx[cosxlogx+sinxx]+(sinx)cosx[cotxcosxsinxlogsinx]\frac{dy}{dx}=x^{sin\,x}[cos\,x\,log\,x+\frac{sinx}{x}]+(sinx)^{cosx}[cotx\,cosx-sinx\,log\,sinx]
Let y=xsinx+(sinx)cosxy=x^{sin\,x}+(sin\,x)^{cosx}
Also,let u=xsinxu=x^{sinx} and v=(sinx)cosxv=(sinx)^{cosx}
y=u+v∴y=u+v
dydx=dudx+dvdx....(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ....(1)
u=xsinxu=x^{sinx}
logu=log(xsinx)⇒log\,u=log(x^{sin\,x})
logu=sinxlogx⇒log\,u=sin\,x\,log\,x
Differentiating both sides with respect to xx,we obtain
1ududx=ddx(sinx)log(x)+sinx.ddx[logx]⇒\frac{1}{u}\frac{du}{dx}=\frac{d}{dx}(sin\,x)log(x)+sinx.\frac{d}{dx}[log\,x]
dudx=u[cosxlogx+sinx.1x]⇒\frac{du}{dx}=u[cos\,x\,log\,x+sinx.\frac{1}{x}]
dudx=xsinx[cosxlogx+sinxx]..(2)⇒\frac{du}{dx}=x^{sin\,x}[cos\,x\,log\,x+\frac{sinx}{x}] ..(2)
v=(sinx)cosxv=(sin\,x)^{cosx}
logv=log(sinx)cosx⇒log\,v=log(sin\,x)^{cosx}
logv=cosxlog(sinx)⇒log\,v=cos\,x\,log(sin\,x)
Differentiating both sides with respect to xx, we obtain
1vdvdx=ddx(cosx)×log(sinx)+cosxddx(log(sinx))\frac{1}{v}\frac{dv}{dx}=\frac{d}{dx}(cosx)\times log(sinx)+cosx\frac{d}{dx}(log(sinx))
dvdx=v[sinxlog(sinx)+cosx.1sinx.ddx(sinx)]⇒\frac{dv}{dx}=v[-sin\,x\,log(sinx)+cosx.\frac{1}{sinx}.\frac{d}{dx}(sinx)]
dvdx=(sinx)cosx[sinxlogsinx+cosxsinxcosx]⇒\frac{dv}{dx}=(sin\,x)^{cos\,x}[-sin\,x\,log\,sin\,x+\frac{cos\,x}{sin\,x}cos\,x]
dvdx=(sinx)cosx[sinxlogsinx+cotxcosx]⇒\frac{dv}{dx}=(sinx)^{cosx}[-sinx\,log\,sinx+cotx\,cosx]
dvdx=(sinx)cosx[cotxcosxsinxlogsinx]...(3)⇒\frac{dv}{dx}=(sinx)^{cosx}[cotx\,cosx-sinx\,log\,sinx] ...(3)
Therefore,from (1),(2),and(3),we obtain
dydx=xsinx[cosxlogx+sinxx]+(sinx)cosx[cotxcosxsinxlogsinx]\frac{dy}{dx}=x^{sin\,x}[cos\,x\,log\,x+\frac{sinx}{x}]+(sinx)^{cosx}[cotx\,cosx-sinx\,log\,sinx]