Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x:
xsinx+(sinx)cosx
The correct answer is dxdy=xsinx[cosxlogx+xsinx]+(sinx)cosx[cotxcosx−sinxlogsinx]
Let y=xsinx+(sinx)cosx
Also,let u=xsinx and v=(sinx)cosx
∴y=u+v
⇒dxdy=dxdu+dxdv....(1)
u=xsinx
⇒logu=log(xsinx)
⇒logu=sinxlogx
Differentiating both sides with respect to x,we obtain
⇒u1dxdu=dxd(sinx)log(x)+sinx.dxd[logx]
⇒dxdu=u[cosxlogx+sinx.x1]
⇒dxdu=xsinx[cosxlogx+xsinx]..(2)
v=(sinx)cosx
⇒logv=log(sinx)cosx
⇒logv=cosxlog(sinx)
Differentiating both sides with respect to x, we obtain
v1dxdv=dxd(cosx)×log(sinx)+cosxdxd(log(sinx))
⇒dxdv=v[−sinxlog(sinx)+cosx.sinx1.dxd(sinx)]
⇒dxdv=(sinx)cosx[−sinxlogsinx+sinxcosxcosx]
⇒dxdv=(sinx)cosx[−sinxlogsinx+cotxcosx]
⇒dxdv=(sinx)cosx[cotxcosx−sinxlogsinx]...(3)
Therefore,from (1),(2),and(3),we obtain
dxdy=xsinx[cosxlogx+xsinx]+(sinx)cosx[cotxcosx−sinxlogsinx]