Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx:
(sinx)x+sin1x(sin\,x)^x+sin^{-1}\sqrt{x}

Answer

The correct answer is dydx=(sinx)x(xcotx+logsinx)+12xx2\frac{dy}{dx}=(sin\,x)^x(xcot\,x+log\,sin\,x)+\frac{1}{2\sqrt{x-x^2}}
Let y=(sinx)x+sin1xy=(sin\,x)^x+sin^{-1}\sqrt{x}
Also,let u=(sinx)xu=(sin\,x)^x and v=sin1xv=sin^{-1}\sqrt{x}
y=u+v∴y=u+v
dydx=dudx+dvdx....(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ....(1)
u=(sinx)xu=(sin\,x)^x
logu=log(sinx)x⇒log\,u=log(sin\,x)^x
logu=xlog(sinx)⇒log\,u=xlog(sin\,x)
Differentiating both sides with respect to xx,we obtain
1ududx=ddx(x)×log(sinx)+x×ddx[log(sinx)]⇒\frac{1}{u}\frac{du}{dx}=\frac{d}{dx}(x)\times log(sin\,x)+x\times \frac{d}{dx}[log(sin\,x)]
dudx=u[1.log(sinx)+x.1sinx.ddx(sinx)]⇒\frac{du}{dx}=u[1.log(sin\,x)+x.\frac{1}{sin\,x}.\frac{d}{dx}(sin\,x)]
dudx=(sinx)x[log(sinx)+xsinx.cosx]⇒\frac{du}{dx}=(sin\,x)^x[log(sin\,x)+\frac{x}{sin\,x}.cosx]
dudx=(sinx)x(xcotx+logsinx)..(2)⇒\frac{du}{dx}=(sin\,x)^x(xcot\,x+log\,sin\,x) ..(2)
v=sin1xv=sin^{-1}\sqrt{x}
Differentiating both sides with respect to xx, we obtain
dvdx=11(x)2.ddx(x)\frac{dv}{dx}=\frac{1}{\sqrt{1-(\sqrt{x})^2}}.\frac{d}{dx}(\sqrt{x})
dvdx=11x.12x⇒\frac{dv}{dx}=\frac{1}{\sqrt{1-x}}.\frac{1}{2\sqrt{x}}
dvdx=12xx2....(3)⇒\frac{dv}{dx}=\frac{1}{2\sqrt{x-x^2}} ....(3)
Therefore,from (1),(2),and(3),we obtain
dydx=(sinx)x(xcotx+logsinx)+12xx2\frac{dy}{dx}=(sin\,x)^x(xcot\,x+log\,sin\,x)+\frac{1}{2\sqrt{x-x^2}}