Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x:
(sinx)x+sin−1x
Answer
The correct answer is dxdy=(sinx)x(xcotx+logsinx)+2x−x21
Let y=(sinx)x+sin−1x
Also,let u=(sinx)x and v=sin−1x
∴y=u+v
⇒dxdy=dxdu+dxdv....(1)
u=(sinx)x
⇒logu=log(sinx)x
⇒logu=xlog(sinx)
Differentiating both sides with respect to x,we obtain
⇒u1dxdu=dxd(x)×log(sinx)+x×dxd[log(sinx)]
⇒dxdu=u[1.log(sinx)+x.sinx1.dxd(sinx)]
⇒dxdu=(sinx)x[log(sinx)+sinxx.cosx]
⇒dxdu=(sinx)x(xcotx+logsinx)..(2)
v=sin−1x
Differentiating both sides with respect to x, we obtain
dxdv=1−(x)21.dxd(x)
⇒dxdv=1−x1.2x1
⇒dxdv=2x−x21....(3)
Therefore,from (1),(2),and(3),we obtain
dxdy=(sinx)x(xcotx+logsinx)+2x−x21