Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx
(logx)x+xlogx(log\,x)^x+x^{log\,x}

Answer

The correct answer is dydx=(logx)x1[1+logx.log(logx)]+2xlogx1.logx\frac{dy}{dx}=(log\,x)^{x-1}[1+log\,x.log(log\,x)]+2x^{log\,x-1}.log\,x
Let y=(logx)x+xlogxy=(log\,x)^x+x^{log\,x}
Also let u=(logx)xu=(log\,x)^x and v=xlogxv=x^{logx}
y=u+v∴y=u+v
dydx=dudx+dvdx...(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ...(1)
u=(logx)xu=(logx)^x
logu=log[(logx)x]⇒log\,u=log[(logx)^x]
logu=xlog(logx)⇒log\,u=xlog(log\,x)
Differentiating both sides with respect to xx, we obtain
1ududx=ddx(x)×log(logx)+x.ddxlog[(logx)]\frac{1}{u}\frac{du}{dx}=\frac{d}{dx}(x)\times log(log\,x)+x.\frac{d}{dx}log[(logx)]
dudx=u[1×log(logx)+x.1logx.ddx(logx)]⇒\frac{du}{dx}=u[1\times log(log\,x)+x.\frac{1}{log\,x}.\frac{d}{dx}(log\,x)]
dudx=(logx)x[log(logx)+xlogx.1x]⇒\frac{du}{dx}=(logx)^x[log(log\,x)+\frac{x}{log\,x}.\frac{1}{x}]
dudx=(logx)x[log(logx)+1logx]⇒\frac{du}{dx}=(logx)^x[log(log\,x)+\frac{1}{logx}]
dudx=(logx)x[log(logx).logx+1logx]⇒\frac{du}{dx}=\frac{(log\,x)^x[log(log\,x).log\,x+1}{log\,x}]
dudx=(logx)x1[1+logx.log(logx)]......(2)⇒\frac{du}{dx}=(log\,x)^{x-1}[1+log\,x.log(log\,x)] ......(2)
v=xlogxv=x^{log\,x}
logv=log(xlogx)⇒log\,v=log(x^{log\,x})
logv=logxlogx=(logx)2⇒log\,v=log\,x\,log\,x=(log\,x)^2
Differentiating both sides with respect to x, we obtain
1v.dvdx=ddx[(logx)2]\frac{1}{v}.\frac{dv}{dx}=\frac{d}{dx}[(log\,x)^2]
1v.dvdx=2(logx).ddx(logx)⇒\frac{1}{v}.\frac{dv}{dx}=2(log\,x).\frac{d}{dx}(log\,x)
dvdx=2v(logx).1x⇒\frac{dv}{dx}=2v(logx).\frac{1}{x}
dvdx=2xlogxlogxx⇒\frac{dv}{dx}=2x^{logx}\frac{log\,x}{x}
dvdx=2xlogx1.logx...(3)⇒\frac{dv}{dx}=2x^{log\,x-1}.logx ...(3)
Therefore,from (1),(2),and(3),we obtain
dydx=(logx)x1[1+logx.log(logx)]+2xlogx1.logx\frac{dy}{dx}=(log\,x)^{x-1}[1+log\,x.log(log\,x)]+2x^{log\,x-1}.log\,x