Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx.
(x+1x)x+x(1+1x)(x+\frac{1}{x})^x+x^{(1+\frac{1}{x})}

Answer

The correct answer dydx=(x+1x)x[x21x2+1+log(x+1x)]+x(1+1x)(x+1logxx2)\frac{dy}{dx}=(x+\frac{1}{x})^x\bigg[\frac{x^2-1}{x^2+1}+log(x+\frac{1}{x})\bigg]+x^{(1+\frac{1}{x})}(\frac{x+1-log\,x}{x^2})
Let y=(x+1x)x+x(1+1x)y=(x+\frac{1}{x})^x+x^{(1+\frac{1}{x})}
Also let u=(x+1x)xu=(x+\frac{1}{x})^x and v=x(1+1x)v=x^{(1+\frac{1}{x})}
y=u+v∴y=u+v
dydx=dudx+dvdx....(1)⇒\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx} ....(1)
Then,u=(x+1x)xu=(x+\frac{1}{x})^x
logu=log(x+1x)x⇒log\,u=log(x+\frac{1}{x})^x
logu=xlog(x+1x)⇒log\,u=xlog(x+\frac{1}{x})
Differentiating both sides with respect to xx,we obtain
1u.dudx=ddx(x)×log(x+1x)+x×ddx[log(x+1x)]\frac{1}{u}.\frac{du}{dx}=\frac{d}{dx}(x)\times log(x+\frac{1}{x})+x\times \frac{d}{dx}[log(x+\frac{1}{x})]
1u.dudx=1×log(x+1x)+x×1(x+1x).ddx(x+1x)\frac{1}{u}.\frac{du}{dx}=1\times log(x+\frac{1}{x})+x\times \frac{1}{(x+\frac{1}{x})}.\frac{d}{dx}\bigg(x+\frac{1}{x}\bigg)
1u.dudx=u[log(x+1x)+x(x+1x)×(11x2)]⇒\frac{1}{u}.\frac{du}{dx}=u\bigg[log(x+\frac{1}{x})+\frac{x}{(x+\frac{1}{x})}\times (1-\frac{1}{x^2})\bigg]
dudx=(x+1x)x[log(x+1x)+(x1x)(x+1x)]⇒\frac{du}{dx}=(x+\frac{1}{x})^x\bigg[log(x+\frac{1}{x})+\frac{(x-\frac{1}{x})}{(x+\frac{1}{x})}\bigg]
dudx=(x+1x)x[log(x+1x)+x21x2+1]⇒\frac{du}{dx}=(x+\frac{1}{x})^x\bigg[log(x+\frac{1}{x})+\frac{x^2-1}{x^2+1}\bigg]
dudx=(x+1x)x[x21x2+1+log(x+1x)]⇒\frac{du}{dx}=(x+\frac{1}{x})^x\bigg[\frac{x^2-1}{x^2+1}+log(x+\frac{1}{x})\bigg]
v=x(1+1x)v=x^{(1+\frac{1}{x})}
logv=log[x(1+1x)]⇒log\,v=log[x^{(1+\frac{1}{x})}]
logv=(1+1x)logx⇒log\,v=(1+\frac{1}{x})log\,x
Differentiating both sides with respect to xx,we obtain
1vdvdx=[ddx(x+1x)]×logx+(1+1x).ddxlogx\frac{1}{v}\frac{dv}{dx}=[\frac{d}{dx}(x+\frac{1}{x})]\times log\,x+(1+\frac{1}{x}).\frac{d}{dx}log\,x
1vdvdx=(1x2)logx+(1+1x).1x⇒\frac{1}{v}\frac{dv}{dx}=(\frac{-1}{x^2})log\,x+(1+\frac{1}{x}).\frac{1}{x}
1vdvdx=logxx2+1x+1x2⇒\frac{1}{v}\frac{dv}{dx}=-\frac{log\,x}{x^2}+\frac{1}{x}+\frac{1}{x^2}
dvdx=v[logx+x+1x2]⇒\frac{dv}{dx}=v[\frac{-log\,x+x+1}{x^2}]
dvdx=x(x+1x)(x+1logxx2)....(3)⇒\frac{dv}{dx}=x^{(x+\frac{1}{x})}(\frac{x+1-log\,x}{x^2}) ....(3)
Therefore, from (1),(2),and(3),we obtain
dydx=(x+1x)x[x21x2+1+log(x+1x)]+x(1+1x)(x+1logxx2)\frac{dy}{dx}=(x+\frac{1}{x})^x\bigg[\frac{x^2-1}{x^2+1}+log(x+\frac{1}{x})\bigg]+x^{(1+\frac{1}{x})}(\frac{x+1-log\,x}{x^2})