Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x.
(x+x1)x+x(1+x1)
The correct answer dxdy=(x+x1)x[x2+1x2−1+log(x+x1)]+x(1+x1)(x2x+1−logx)
Let y=(x+x1)x+x(1+x1)
Also let u=(x+x1)x and v=x(1+x1)
∴y=u+v
⇒dxdy=dxdu+dxdv....(1)
Then,u=(x+x1)x
⇒logu=log(x+x1)x
⇒logu=xlog(x+x1)
Differentiating both sides with respect to x,we obtain
u1.dxdu=dxd(x)×log(x+x1)+x×dxd[log(x+x1)]
u1.dxdu=1×log(x+x1)+x×(x+x1)1.dxd(x+x1)
⇒u1.dxdu=u[log(x+x1)+(x+x1)x×(1−x21)]
⇒dxdu=(x+x1)x[log(x+x1)+(x+x1)(x−x1)]
⇒dxdu=(x+x1)x[log(x+x1)+x2+1x2−1]
⇒dxdu=(x+x1)x[x2+1x2−1+log(x+x1)]
v=x(1+x1)
⇒logv=log[x(1+x1)]
⇒logv=(1+x1)logx
Differentiating both sides with respect to x,we obtain
v1dxdv=[dxd(x+x1)]×logx+(1+x1).dxdlogx
⇒v1dxdv=(x2−1)logx+(1+x1).x1
⇒v1dxdv=−x2logx+x1+x21
⇒dxdv=v[x2−logx+x+1]
⇒dxdv=x(x+x1)(x2x+1−logx)....(3)
Therefore, from (1),(2),and(3),we obtain
dxdy=(x+x1)x[x2+1x2−1+log(x+x1)]+x(1+x1)(x2x+1−logx)