Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the function with respect to xx.
(x+3)2.(x+4)3.(x+5)4(x+3)^2.(x+4)^3.(x+5)^4

Answer

The correct answer is dydx=(x+3)(x+4)2(x+5)3(9x2+70x+133)∴\frac{dy}{dx}=(x+3)(x+4)^2(x+5)^3(9x^2+70x+133)
Let y=(x+3)2.(x+4)3.(x+5)4y=(x+3)^2.(x+4)^3.(x+5)^4
Taking logarithm on both the sides,we obtain
logy=log(x+3)2+log(x+4)3+log(x+5)4log\,y=log(x+3)^2+log(x+4)^3+log(x+5)^4
logy=2log(x+3)+3log(x+4)+4log(x+5)⇒log\,y=2log(x+3)+3log(x+4)+4log(x+5)
Differentiating both sides with respect to x,we obtain
1y.dydx=2.1x+3.ddx(x+3)+3.1x+4.ddx(x+4)+4.1x+5.ddx(x+5)\frac{1}{y}.\frac{dy}{dx}=2.\frac{1}{x+3}.\frac{d}{dx}(x+3)+3.\frac{1}{x+4}.\frac{d}{dx}(x+4)+4.\frac{1}{x+5}.\frac{d}{dx}(x+5)
dydx=y[2x+3+3x+4+4x+5]⇒\frac{dy}{dx}=y[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}]
dydx=(x+3)2(x+4)3(x+5)4.[2x+3+3x+4+4x+5]⇒\frac{dy}{dx}=(x+3)^2(x+4)^3(x+5)^4.[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}]
dydx=(x+3)2(x+4)3(x+5)4.[2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5)]⇒\frac{dy}{dx}=(x+3)^2(x+4)^3(x+5)^4.[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)}]
dydx=(x+3)(x+4)2(x+5)3.[2(x2+9x+20)+3(x2+8x+15)+4(x2+7x+12)]\frac{dy}{dx}=(x+3)(x+4)^2(x+5)^3.[2(x^2+9x+20)+3(x^2+8x+15)+4(x^2+7x+12)]
dydx=(x+3)(x+4)2(x+5)3(9x2+70x+133)∴\frac{dy}{dx}=(x+3)(x+4)^2(x+5)^3(9x^2+70x+133)