Question
Mathematics Question on Continuity and differentiability
Differentiate the function with respect to x.
(x+3)2.(x+4)3.(x+5)4
Answer
The correct answer is ∴dxdy=(x+3)(x+4)2(x+5)3(9x2+70x+133)
Let y=(x+3)2.(x+4)3.(x+5)4
Taking logarithm on both the sides,we obtain
logy=log(x+3)2+log(x+4)3+log(x+5)4
⇒logy=2log(x+3)+3log(x+4)+4log(x+5)
Differentiating both sides with respect to x,we obtain
y1.dxdy=2.x+31.dxd(x+3)+3.x+41.dxd(x+4)+4.x+51.dxd(x+5)
⇒dxdy=y[x+32+x+43+x+54]
⇒dxdy=(x+3)2(x+4)3(x+5)4.[x+32+x+43+x+54]
⇒dxdy=(x+3)2(x+4)3(x+5)4.[(x+3)(x+4)(x+5)2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)]
dxdy=(x+3)(x+4)2(x+5)3.[2(x2+9x+20)+3(x2+8x+15)+4(x2+7x+12)]
∴dxdy=(x+3)(x+4)2(x+5)3(9x2+70x+133)