Solveeit Logo

Question

Question: Differentiate the function \({{\left( \sin x \right)}^{x}}\) with respect to x....

Differentiate the function (sinx)x{{\left( \sin x \right)}^{x}} with respect to x.

Explanation

Solution

We need to find the value of dydx\dfrac{dy}{dx} where y=(sinx)xy={{\left( \sin x \right)}^{x}}. To make the equation more differentiable using different methods, we take logarithm on both sides of the equation to get logy=xlog(sinx)\log y=x\log \left( \sin x \right). Then we take differentiation on both sides. Using the formula of differentiation of logx\log x and the chain rule we find the differentiation value. We replace the value of y in the final answer to get the solution of the problem.

Complete step-by-step solution
Let’s assume y=(sinx)xy={{\left( \sin x \right)}^{x}}. We need to differentiate y with respect to x. We are trying to find dydx\dfrac{dy}{dx}.
First, we change the form of “y” taking logarithms on both sides.
So, y=(sinx)xlogy=log(sinx)xy={{\left( \sin x \right)}^{x}}\Rightarrow \log y=\log {{\left( \sin x \right)}^{x}}.
We have a logarithmic operation logabn=nlogab{{\log }_{a}}{{b}^{n}}=n{{\log }_{a}}b. We apply that on logy=log(sinx)x\log y=\log {{\left( \sin x \right)}^{x}}.
logy=log(sinx)x logy=xlog(sinx) \begin{aligned} & \log y=\log {{\left( \sin x \right)}^{x}} \\\ & \Rightarrow \log y=x\log \left( \sin x \right) \\\ \end{aligned}.
Now we apply differentiation on the equation logy=xlog(sinx)\log y=x\log \left( \sin x \right).
ddx(logy)=ddx[xlog(sinx)]\dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left[ x\log \left( \sin x \right) \right].
Differentiation of logx\log x is 1x\dfrac{1}{x}. We also apply chain rule to find the right-side differentiation of the equation.
ddx(logy)=ddx[xlog(sinx)] 1ydydx=xsinx×cosx+log(sinx) 1ydydx=xcotx+log(sinx) \begin{aligned} & \dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left[ x\log \left( \sin x \right) \right] \\\ & \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{\sin x}\times \cos x+\log \left( \sin x \right) \\\ & \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\cot x+\log \left( \sin x \right) \\\ \end{aligned}.
We need to find the value of dydx\dfrac{dy}{dx}. So, we multiply with y on both sides and get
1ydydx=xcotx+log(sinx) dydx=y[xcotx+log(sinx)] \begin{aligned} & \dfrac{1}{y}\dfrac{dy}{dx}=x\cot x+\log \left( \sin x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=y\left[ x\cot x+\log \left( \sin x \right) \right] \\\ \end{aligned}.
We put the value of y in the equation.
dydx=y[xcotx+log(sinx)] dydx=(sinx)x[xcotx+log(sinx)] \begin{aligned} & \dfrac{dy}{dx}=y\left[ x\cot x+\log \left( \sin x \right) \right] \\\ & \Rightarrow \dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\left[ x\cot x+\log \left( \sin x \right) \right] \\\ \end{aligned}.
So, the differentiation of the given equation (sinx)x{{\left( \sin x \right)}^{x}} with respect to x is dydx=(sinx)x[xcotx+log(sinx)]\dfrac{dy}{dx}={{\left( \sin x \right)}^{x}}\left[ x\cot x+\log \left( \sin x \right) \right].

Note: We need to remember that we could not have solved it using the differentiation of y=axy={{a}^{x}} form as in the formula value of a has to be constant. Here the value of a was variable as a=sinxa=\sin x. So, we needed to change the form of the exponential into multiplication. That’s why we used the logarithm to find the simplified form.