Solveeit Logo

Question

Question: Differentiate the following with respect to \[x\]: \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]...

Differentiate the following with respect to xx: e3sin2x2cos2x{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}

Explanation

Solution

Here, we will find the differentiation of the given function with respect to the variable. We will find the derivative of all the functions separately. First, we will find the derivative of the exponential function and then the derivative of the exponential of the trigonometric function. Then we will simplify it further to get the required value.

Formula Used:
We will use the following formulas:
1. ddx(ex)=xex\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}
2. ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}
3. ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
4. ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
5. 2sinxcosx=sin2x2\sin x\cos x = \sin 2x

Complete step-by-step answer:
Let the given function be yy.
So, we get y=e3sin2x2cos2xy = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}
Differentiating with respect to xx, we get
dydx=ddx(e3sin2x2cos2x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}} \right)
By using the derivative formula ddx(ex)=xex\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}, we get
dydx=e3sin2x2cos2xddx(3sin2x2cos2x)\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \dfrac{d}{{dx}}\left( {3{{\sin }^2}x - 2{{\cos }^2}x} \right)
We know that sin2x=(sinx)2{\sin ^2}x = {\left( {\sin x} \right)^2}.
So, rewriting the above equation, we get
dydx=e3sin2x2cos2x[3ddx(sinx)22ddx(cosx)2]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3\dfrac{d}{{dx}}{{\left( {\sin x} \right)}^2} - 2\dfrac{d}{{dx}}{{\left( {\cos x} \right)}^2}} \right]
By using the derivative formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, we get
dydx=e3sin2x2cos2x[32sinxddx(sinx)22cosxddx(cosx)]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3 \cdot 2\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 2 \cdot 2\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]
dydx=e3sin2x2cos2x[6sinxddx(sinx)4cosxddx(cosx)]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 4\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]
By using the derivative formula ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x , we get
dydx=e3sin2x2cos2x[6sinxcosx4cosx(sinx)]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x - 4\cos x \cdot \left( { - \sin x} \right)} \right]
We know that the product of two negative integers is a positive integer. Therefore, we get
dydx=e3sin2x2cos2x[6sinxcosx+4sinxcosx]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x + 4\sin x \cdot \cos x} \right]
By adding the terms, we get
dydx=e3sin2x2cos2x[10sinxcosx]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {10\sin x \cdot \cos x} \right]
By rewriting the terms in terms of the trigonometric identity, we get
dydx=e3sin2x2cos2x[52sinxcosx]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5 \cdot 2\sin x\cos x} \right]
Using the trigonometric formula, 2sinxcosx=sin2x2\sin x\cos x = \sin 2x, we get
dydx=e3sin2x2cos2x[5sin2x]\Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5\sin 2x} \right]
dydx=5sin2xe3sin2x2cos2x\Rightarrow \dfrac{{dy}}{{dx}} = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}
y=5sin2xe3sin2x2cos2x\Rightarrow y' = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}
Therefore, the derivative of e3sin2x2cos2x{e^{3{{\sin }^2}x - 2{{\cos }^2}x}} is 5sin2xe3sin2x2cos2x5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}.

Note: We should know that if a function has two functions, then both the functions have to be differentiated separately. Differentiation is a method of finding the derivative the function and finding the rate of change of function with respect to one. Here we have found out the derivative of exponential function. Exponential function is a constant which is raised to some power. Exponential function is the inverse of logarithmic function.