Solveeit Logo

Question

Question: Differentiate the following with respect to \(x\): \({\sin ^{ - 1}}\left( {\dfrac{{1 - 25{x^2}}}{{...

Differentiate the following with respect to xx:
sin1(125x21+25x2){\sin ^{ - 1}}\left( {\dfrac{{1 - 25{x^2}}}{{1 + 25{x^2}}}} \right)

Explanation

Solution

let y=sin1(125x21+25x2)y = {\sin ^{ - 1}}\left( {\dfrac{{1 - 25{x^2}}}{{1 + 25{x^2}}}} \right) and 5x=tanθ5x = \tan \theta , then the expression will be y=sin1(1tan2θ1+tan2θ)y = {\sin ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right). Simplify the expression using the properties of trigonometry. After simplifying the expression, put θ=tan1(5x)\theta = {\tan ^{ - 1}}\left( {5x} \right) and apply chain rule to find the derivative of the given expression.

Complete step-by-step answer:
We will first let the given expression, sin1(125x21+25x2){\sin ^{ - 1}}\left( {\dfrac{{1 - 25{x^2}}}{{1 + 25{x^2}}}} \right) equals to yy. We have to find the value of dydx\dfrac{{dy}}{{dx}}
Since, we can see 25x2=(5x)225{x^2} = {\left( {5x} \right)^2}, let 5x=tanθ5x = \tan \theta
Then,
y=sin1(1tan2θ1+tan2θ)y = {\sin ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)
We also know that (1tan2θ1+tan2θ)=cos2θ\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = \cos 2\theta
Hence, y=sin1(cos2θ)y = {\sin ^{ - 1}}\left( {\cos 2\theta } \right)
Now, we can write cosα=sin(π2α)\cos \alpha = \sin \left( {\dfrac{\pi }{2} - \alpha } \right)
y=sin1(sin(π22θ))y = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{\pi }{2} - 2\theta } \right)} \right)
Since, we have the property of inverse, that sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x
Then, y=π22θy = \dfrac{\pi }{2} - 2\theta
Substitute back the value of θ\theta
We had let 5x=tanθ5x = \tan \theta , therefore, the value of θ=tan1(5x)\theta = {\tan ^{ - 1}}\left( {5x} \right)
y=π22tan1(5x)y = \dfrac{\pi }{2} - 2{\tan ^{ - 1}}\left( {5x} \right)
Differentiate both sides with respect to xx
Here, we will apply rain rule, which states that, f(g(x))=f(g(x))g(x)f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right)g'\left( x \right)
Also, it is known that d(tan1x)dx=11+x2\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}
dydx=0211+(5x)2(d(5x)dx) dydx=211+(5x)2(5) dydx=101+25x2  \dfrac{{dy}}{{dx}} = 0 - 2\dfrac{1}{{1 + {{\left( {5x} \right)}^2}}}\left( {\dfrac{{d\left( {5x} \right)}}{{dx}}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 2\dfrac{1}{{1 + {{\left( {5x} \right)}^2}}}\left( 5 \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 10}}{{1 + 25{x^2}}} \\\
Hence, the value of differentiation of sin1(125x21+25x2){\sin ^{ - 1}}\left( {\dfrac{{1 - 25{x^2}}}{{1 + 25{x^2}}}} \right) is 101+25x2\dfrac{{ - 10}}{{1 + 25{x^2}}}.

Note: Students must know the formulas of trigonometry to do this question correctly. Whenever we have the form (1x21+x2)\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right), in the angle of an inverse function, we always substitute x=tanθx = \tan \theta and hence, form the formula of cos2θ\cos 2\theta .