Solveeit Logo

Question

Question: Differentiate the following w.r.t.x: \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \...

Differentiate the following w.r.t.x:
tan1(cosx+sinxcosxsinx){\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)

Explanation

Solution

Make use of he standard formula which says [tanA+tanB1tanAtanB=tan(A+B)]\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]

Complete step by step solution:
y=tan1(cosx+sinxcosxsinx)y = {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)
Taking cosx\cos xcommon in the numerator and denominator, we will get
y=tan1[cosx(1+sinxcosx)cosx(1sinxcosx)]y = {\tan ^{ - 1}}\left[ {\dfrac{{\cos x\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\cos x\left( {1 - \dfrac{{\sin x}}{{\cos x}}} \right)}}} \right]\,\,\,
As we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
y=tan1(1+tanx1tanx)y = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)
As we know that tanπ4=1\tan \dfrac{\pi }{4} = 1
tany=(tanπ4+tanx)1tanπ4×tanx\tan y = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan x} \right)}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}} [tanA+tanB1tanAtanB=tan(A+B)]\left[ {\therefore \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,
Then, by using the formula [tanA+tanB1tanAtanB=tan(A+B)]\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,
tany=tan(π4+x)\tan y = \tan \left( {\dfrac{\pi }{4} + x} \right)
Equating angles, when the trigonometric are the same
y=π4+xy = \dfrac{\pi }{4} + x
Now, by differentiating on both sides of the equation with respect to x, we will have.
dydx=0+1                  [ddx(π4)=0] =1                            \dfrac{{dy}}{{dx}} = 0 + 1\;\;\;\;\;\;\;\;\;\left[ {\therefore \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4}} \right) = 0} \right] \\\ = 1\;\;\;\;\;\;\;\;\;\;\;\;\; \\\

Note: The inverse trigonometric functions have suitably restricted domains. So, when solving these problems check if the domain of the function is asked/given and proceed accordingly