Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
(x1)(x2)(x3)(x4)(x5)\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}

Answer

The correct answer is dydx=12(x1)(x2)(x3)(x4)(x5)[(1x1+1x21x31x41x5)]\therefore \frac{dy}{dx}=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\bigg[(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})\bigg]
Let y=(x1)(x2)(x3)(x4)(x5)y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}
Taking logarithm on both the sides,we obtain
logy=log(x1)(x2)(x3)(x4)(x5)log\,y=log\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}
    logy=12log[(x1)(x2)(x3)(x4)(x5)]\implies log\,y=\frac{1}{2}log\bigg[\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\bigg]
logy=12[log(x1)(x2)log(x3)(x4)(x5)]⇒log\,y=\frac{1}{2}[log(x-1)(x-2)-log(x-3)(x-4)(x-5)]
logy=12[log(x1)+log(x2)log(x3)log(x4)log(x5)]⇒log\,y=\frac{1}{2}[log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5)]
Differentiating both sides with respect to x,we obtain
1ydydx=12[1x1ddx(x1)+1x2.ddx(x2)1x3.ddx(x3)1x4.ddx(x4)1x5.ddx(x5)]\frac{1}{y}\frac{dy}{dx}=\frac{1}{2}\bigg[\frac{1}{x-1}\frac{d}{dx}(x-1)+\frac{1}{x-2}.\frac{d}{dx}(x-2)-\frac{1}{x-3}.\frac{d}{dx}(x-3)-\frac{1}{x-4}.\frac{d}{dx}(x-4)-\frac{1}{x-5}.\frac{d}{dx}(x-5)\bigg]
dydx=y2(1x1+1x21x31x41x5)⇒\frac{dy}{dx}=\frac{y}{2}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})
dydx=12(x1)(x2)(x3)(x4)(x5)[(1x1+1x21x31x41x5)]\therefore \frac{dy}{dx}=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\bigg[(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})\bigg]