Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
ex,x>0\sqrt{e^{\sqrt{x}}},x>0

Answer

The correct answer is dydx=ex4xex,x>0⇒\frac{dy}{dx}=\frac{e^{\sqrt{x}}}{4\sqrt{xe^{\sqrt{x}}}},x>0
Let y=exy=\sqrt{e^{\sqrt{x}}}
Then,y2=exy^2=e^{\sqrt{x}}
By differentiating this relationship with respect to xx,we obtain
    y2=ex\implies y^2=e^{\sqrt{x}}
2ydydx=exddx(x)⇒2y\frac{dy}{dx}=e^{\sqrt{x}}\frac{d}{dx}(\sqrt{x}) [By applying the chain rule]
2ydydx=ex12.1x⇒2y\frac{dy}{dx}=e^{\sqrt{x}}\frac{1}{2}.\frac{1}{\sqrt{x}}
dydx=ex4yx⇒\frac{dy}{dx}=\frac{e^{\sqrt{x}}}{4y\sqrt{x}}
dydx=ex4exx⇒\frac{dy}{dx}=\frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}
dydx=ex4xex,x>0⇒\frac{dy}{dx}=\frac{e^{\sqrt{x}}}{4\sqrt{xe^{\sqrt{x}}}},x>0