Question
Mathematics Question on Continuity and differentiability
Differentiate the following w.r.t. x:
sin(tan−1e−x)
Answer
The correct answer is =1+e−2x−e−xcos(tan−1e−x)
Let y=sin(tan−1e−x)
By using the chain rule,we obtain
dxdy=dxd[sin(tan−1e−x)]
=cos(tan−1e−x).dxd(tan−1e−x)
=cos(tan−1e−x).1+(e−x)21.dxd(e−x)
=1+e−2xcos(tan−1e−x).e−x.dxd(−x)
=1+e−2xe−xcos(tan−1e−x)×(−1)
=1+e−2x−e−xcos(tan−1e−x)