Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
sin(tan1ex)sin(tan^{-1}e^{-x})

Answer

The correct answer is =excos(tan1ex)1+e2x=\frac{-e^{-x}cos(tan^{-1}e^{-x})}{1+e^{-2x}}
Let y=sin(tan1ex)y=sin(tan^{-1}e^{-x})
By using the chain rule,we obtain
dydx=ddx[sin(tan1ex)]\frac{dy}{dx}=\frac{d}{dx}[sin(tan^{-1}e^{-x})]
=cos(tan1ex).ddx(tan1ex)=cos(tan^{-1}e^{-x}).\frac{d}{dx}(tan^{-1}e^{-x})
=cos(tan1ex).11+(ex)2.ddx(ex)=cos(tan^{-1}e^{-x}).\frac{1}{1+(e^{-x})^2}.\frac{d}{dx}(e^{-x})
=cos(tan1ex)1+e2x.ex.ddx(x)=\frac{cos(tan^{-1}e^{-x})}{1+e^{-2x}}.e^{-x}.\frac{d}{dx}(-x)
=excos(tan1ex)1+e2x×(1)=\frac{e^{-x}cos(tan^{-1}e^{-x})}{1+e^{-2x}}\times(-1)
=excos(tan1ex)1+e2x=\frac{-e^{-x}cos(tan^{-1}e^{-x})}{1+e^{-2x}}