Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:(logx)cosx(log\,x)^{cos\,x}

Answer

The correct answer is dydx=(logx)cosx[cosxxlogxsinxlog(logx)]\frac{dy}{dx}=(log\,x)^{cos\,x}[\frac{cos\,x}{xlog\,x}-sin\,xlog(log\,x)]
Let y=(logx)cosxy=(log\,x)^{cos\,x}
Taking logarithm on both the sides,we obtain
logy=cosx.log(logx)log\,y=cos\,x.log(log\,x)
Differentiating both sides with respect to x,we obtain
1y.dydx=ddx(cosx)×log(logx)+cosx×ddx[log(logx)]\frac{1}{y}.\frac{dy}{dx}=\frac{d}{dx}(cos\,x)\times log(log\,x)+cos\,x\times \frac{d}{dx}[log(log\,x)]
1y.dydx=sinxlog(logx)+cosx×1logx.ddx(logx)⇒\frac{1}{y}.\frac{dy}{dx}=-sin\,xlog(log\,x)+cos\,x\times\frac{1}{log\,x}.\frac{d}{dx}(log\,x)
dydx=y[sinxlog(logx)+cosxlogx.1x]⇒\frac{dy}{dx}=y[-sin\,xlog(log\,x)+\frac{cos\,x}{log\,x}.\frac{1}{x}]
dydx=(logx)cosx[cosxxlogxsinxlog(logx)]∴\frac{dy}{dx}=(log\,x)^{cos\,x}[\frac{cos\,x}{xlog\,x}-sin\,xlog(log\,x)]