Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
log(cosex)log(cos\,e^x)

Answer

The correct answer is =extanex,ex(2n+1)π2,nN=-e^xtan\,e^x,e^x≠(2n+1)\frac{π}{2},n∈N
Let y=log(cosex)y=log(cos\,e^x)
By using the chain rule,we obtain
dydx=ddx[log(cosex)]\frac{dy}{dx}=\frac{d}{dx}[log(cos\,e^x)]
=1cosex.ddx(cosex)=\frac{1}{cos\,e^x}.\frac{d}{dx}(cos\,e^x)
=1cosex.(sinex).ddx(ex)=\frac{1}{cos\,e^x}.(-sin\,e^x).\frac{d}{dx}(e^x)
=sinexcosex.ex=\frac{-sin\,e^x}{cos\,e^x}.e^x
=extanex,ex(2n+1)π2,nN=-e^xtan\,e^x,e^x≠(2n+1)\frac{π}{2},n∈N