Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. x: exsin x\frac {e^x}{sin\ x}

Answer

let y = exsin x\frac {e^x}{sin\ x}
By using the quotient rule, we obtain

dydx\frac {dy}{dx} = sin x.ddx(ex)exddx(sin x)sin2x\frac {sin\ x.\frac {d}{dx}(e^x)-e^x\frac {d}{dx}(sin\ x)}{sin^2x}

dydx\frac {dy}{dx} = sin x.(ex)ex(cos x)sin2x\frac {sin\ x.{(e^x)}-e^x(cos\ x)}{sin^2x}

dydx\frac {dy}{dx} = ex(sin xcos x)sin2x\frac {e^x(sin\ x-cos\ x)}{sin^2x}, x ≠ nπ\pi, n∈Z