Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
cosxlogx,x>0\frac{cos\,x}{log\,x},x>0

Answer

The correct answer is =[xlogx.sinx+cosx]x(logx)2,x>0=\frac{-[xlog\,x.sin\,x+cos\,x]}{x(log\,x)^2},x>0
Let y=cosxlogxy=\frac{cos\,x}{log\,x}
By using the chain rule,we obtain
dydx=ddx(cosx)×logxcosx×ddx(logx)(logx)2\frac{dy}{dx}=\frac{\frac{d}{dx}(cos\,x)\times log\,x-cos\,x\times \frac{d}{dx}(log\,x)}{(log\,x)^2}
=sinxlogxcosx×1x(logx)2=\frac{-sin\,xlog\,x-cos\,x\times \frac{1}{x}}{(log\,x)^2}
=[xlogx.sinx+cosx]x(logx)2,x>0=\frac{-[xlog\,x.sin\,x+cos\,x]}{x(log\,x)^2},x>0