Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
ex+ex2+....+ex5e^x+e^{x^2}+....+e^{x^5}

Answer

The correct answer is =ex+2xex2+3x2ex3+4x3ex4+5x4ex3=e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^3}
Let y=ex+ex2+....+ex5y=e^x+e^{x^2}+....+e^{x^5}
ddx=ddx[ex+ex2+....+ex5]\frac{d}{dx}=\frac{d}{dx}[e^x+e^{x^2}+....+e^{x^5}]
=ddx(ex)+ddx(ex2)+ddx(ex4)+ddx(ex5)=\frac{d}{dx}(e^x)+\frac{d}{dx}(e^{x^2})+\frac{d}{dx}(e^{x^4})+\frac{d}{dx}(e^{x^5})
=ex+[ex2.ddx(x2)]+[ex3.ddx(x3)]+[ex4.ddx(x4)]+[ex5.ddx(x5)]=e^x+[e^{x^2}.\frac{d}{dx}(x^2)]+[e^{x^3}.\frac{d}{dx}(x^3)]+[e^{x^4}.\frac{d}{dx}(x^4)]+[e^{x^5}.\frac{d}{dx}(x^5)]
=ex+2xex2+3x2ex3+4x3ex4+5x4ex3=e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^3}