Question
Mathematics Question on Continuity and differentiability
Differentiate the following w.r.t. x: esin−1x
Answer
let y = esin−1x
By using the chain rule, we obtain
dxdy = \frac {d}{dx}$$(e^{sin^{-1}x})
⇒$$\frac {dy}{dx} = esin−1x . dxd(sin-1x)
⇒$$\frac {dy}{dx} = esin−1x . 1−x21
⇒$$\frac {dy}{dx} = 1−x2esin−1x
∴dxdy = 1−x2esin−1x, x∈(-1,1)