Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
cosx.cos2x.cos3xcosx.cos2x.cos3x

Answer

The correct answer is dydx=cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]∴\frac{dy}{dx}=-cos\,x.cos\,2x.cos\,3x[tan\,x+2tan\,2x+3tan\,3x]
Let y=cosx.cos2x.cos3xy=cosx.cos2x.cos3x
Taking logarithm on both the sides,we obtain
logy=log(cosx.cos2x.cos3x)log\,y=log(cos\,x.cos\,2x.cos\,3x)
logy=log(cosx)+log(cos2x)+log(cos3x)⇒log\,y=log(cos\,x)+log(cos\,2x)+log(cos\,3x)
Differentiating both sides with respect to x,we obtain
1ydydx=1cosx.ddx(cosx)+1cos2x.ddx(cos2x)+1cos3x.ddx(cos3x)\frac{1}{y}\frac{dy}{dx}=\frac{1}{cos\,x}.\frac{d}{dx}(cos\,x)+\frac{1}{cos\,2x}.\frac{d}{dx}(cos\,2x)+\frac{1}{cos\,3x}.\frac{d}{dx}(cos\,3x)
dydx=y[sinxcosxsin2xcos2x.ddx(2x)sin3xcos3x.ddx(3x)]⇒\frac{dy}{dx}=y[-\frac{sin\,x}{cos\,x}-\frac{sin\,2x}{cos\,2x}.\frac{d}{dx}(2x)-\frac{sin\,3x}{cos\,3x}.\frac{d}{dx}(3x)]
dydx=cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]∴\frac{dy}{dx}=-cos\,x.cos\,2x.cos\,3x[tan\,x+2tan\,2x+3tan\,3x]