Question
Mathematics Question on Continuity and differentiability
Differentiate the following w.r.t. x:
cosx.cos2x.cos3x
Answer
The correct answer is ∴dxdy=−cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]
Let y=cosx.cos2x.cos3x
Taking logarithm on both the sides,we obtain
logy=log(cosx.cos2x.cos3x)
⇒logy=log(cosx)+log(cos2x)+log(cos3x)
Differentiating both sides with respect to x,we obtain
y1dxdy=cosx1.dxd(cosx)+cos2x1.dxd(cos2x)+cos3x1.dxd(cos3x)
⇒dxdy=y[−cosxsinx−cos2xsin2x.dxd(2x)−cos3xsin3x.dxd(3x)]
∴dxdy=−cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]