Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate the following w.r.t. xx:
cos(logx+ex),x>0cos(log\,x+e^x),x>0

Answer

The correct answer is =(1x+ex)sin(logx+ex),x>0=-(\frac{1}{x}+e^x)sin(log\,x+e^x),x>0
Let y=cos(logx+ex)y=cos(log\,x+e^x)
By using the chain rule,we obtain
dydx=sin(logx+ex).ddx(logx+ex)\frac{dy}{dx}=-sin(log\,x+e^x).\frac{d}{dx}(log\,x+e^x)
sin(logx+ex)[.ddx(logx)+ddx(ex)]-sin(log\,x+e^x)[.\frac{d}{dx}(log\,x)+\frac{d}{dx}(e^x)]
=sin(logx+ex).(1x+ex)=-sin(log\,x+e^x).(\frac{1}{x}+e^x)
=(1x+ex)sin(logx+ex),x>0=-(\frac{1}{x}+e^x)sin(log\,x+e^x),x>0