Solveeit Logo

Question

Question: Differentiate the following trigonometric function \[{\sin ^2}{\text{x}}\] with respect to \({{\text...

Differentiate the following trigonometric function sin2x{\sin ^2}{\text{x}} with respect to ecosx{{\text{e}}^{\cos {\text{x}}}}

Explanation

Solution

Hint- Proceed the solution of this question first considering the given function as two different functions and then differentiate both w.r.t. x, then further dividing both outcomes will give differentiation of one function with respect to another.

Complete step-by-step answer:
Let u= sin2x{\sin ^2}{\text{x}} & v =ecosx{{\text{e}}^{\cos {\text{x}}}}
Here, we have to Differentiate sin2x{\sin ^2}{\text{x}} with respect to ecosx{{\text{e}}^{\cos {\text{x}}}}.
Step1: Differentiate, u = sin2x{\sin ^2}{\text{x}} with respect to x,
The chain rule tells us how to find the derivative of a composite function.
ddx[f(g(x))]=f’(g(x))g’(x)\dfrac{{\text{d}}}{{{\text{dx}}}}[{\text{f}}\left( {{\text{g(x)}}} \right)] = {\text{f'}}\left( {{\text{g(x)}}} \right){\text{g'(x)}}
A function is composite if you can write it as [f(g(x))][{\text{f}}\left( {{\text{g(x)}}} \right)].
In other words, it is a function within a function, or a function of a function.
dudx=d(sin2x)dx=2sinx.cos x\dfrac{{{\text{du}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}\left( {{\text{si}}{{\text{n}}^2}{\text{x}}} \right)}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}
Hence, differentiation of sin2x{\sin ^2}{\text{x}} with respect to x is dudx=2sinx.cos x\dfrac{{{\text{du}}}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}
Step2 : Differentiate v = ecosx{{\text{e}}^{\cos {\text{x}}}} with respect to x,
dvdx=decosxdx=sinx.ecosx\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}{{\text{e}}^{{\text{cosx}}}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}
Hence, differentiation of ecosx{{\text{e}}^{\cos {\text{x}}}} with respect to x is dvdx=sinx.ecosx\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}
Step3 : Now dividing dudx by dvdx\dfrac{{{\text{du}}}}{{{\text{dx}}}}{\text{ by }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}} ( we get differentiation of sin2x{\sin ^2}{\text{x}} with respect to ecosx{{\text{e}}^{\cos {\text{x}}}})
i.e., dudxdvdx = dudx×dxdv=dudv\dfrac{{\dfrac{{{\text{du}}}}{{{\text{dx}}}}}}{{\dfrac{{{\text{dv}}}}{{{\text{dx}}}}}}{\text{ = }}\dfrac{{{\text{du}}}}{{{\text{dx}}}} \times \dfrac{{{\text{dx}}}}{{{\text{dv}}}} = \dfrac{{{\text{du}}}}{{{\text{dv}}}}
So on putting these values from step3 & step3
2sinx.cosxsinxecosx\Rightarrow \dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}
So \dfrac{{{\text{du}}}}{{{\text{dv}}}} = $$$\dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}$ Hence, differentiation of {\sin ^2}{\text{x}}$$ with respect to ecosx{{\text{e}}^{\cos {\text{x}}}} is 2.cosxecosx\dfrac{{-2{\text{.cosx}}}}{{ {{\text{e}}^{{\text{cosx}}}}}}

Note- Whenever we came up of such type of question we should understand the meaning of derivative (dudv)\left( {\dfrac{{{\text{du}}}}{{{\text{dv}}}}} \right) i.e. rate of change of function u with respect to function v. Hence in the above solution what we are doing, in the first and second step we are differentiating both functions w.r.t. x then on dividing dx term got cancelled hence automatically we get the desired result i.e. rate of change of 1st1^{st} function with respect to 2nd2^{nd} function.