Solveeit Logo

Question

Question: Differentiate the following functions with respect to \[x\] (1) \[\sin \left\\{ {2{{\tan }^{ - 1}}...

Differentiate the following functions with respect to xx
(1) \sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\}
(2) cot1(1+x2x){\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)
(3) tan1(a+x1ax){\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)

Explanation

Solution

We use many differentiation formulas and differentiating techniques to solve this problem. We will use substitution methods and some simplification methods and solve this problem. In the substitution method, we will substitute a value for a variable, which makes our problem simpler.

Complete answer:
(1)
We have to differentiate \sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} with respect to xx.
So, we have to find the value of \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\}
So, we will use a substitution method to solve this problem.
We will substitute x=cos2θx = \cos 2\theta ------(a)
So, we get it as
\dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} } \right]} \right\\}
We all know the formula 1cos2θ1+cos2θ=tan2θ\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = {\tan ^2}\theta
So, we can write it as
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {{{\tan }^2}\theta } } \right]} \right\\}
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\tan \theta } \right]} \right\\}
As we know that, tan1(tanθ)=θ{\tan ^{ - 1}}(\tan \theta ) = \theta
The equation will change as,
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\}
So, now on differentiating this, we get,
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = 2\cos 2\theta .\dfrac{{d\theta }}{{dx}} (ddxsinx=cosx)\left( {\because \dfrac{d}{{dx}}\sin x = \cos x} \right) and (ddxcosx=sinx)\left( {\because \dfrac{d}{{dx}}\cos x = - \sin x} \right)
From equation (a), x=cos2θx = \cos 2\theta , differentiating this with respect to xx, we get, 1=2sin2θ.dθdx1 = - 2\sin 2\theta .\dfrac{{d\theta }}{{dx}}
So, from this, we can write, dθdx=12sin2θ\dfrac{{d\theta }}{{dx}} = \dfrac{{ - 1}}{{2\sin 2\theta }}
Now substituting this value in our main result, we get,
\dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = - 2\cos 2\theta .\dfrac{{ - 1}}{{2\sin 2\theta }}
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = \cot 2\theta
Now, substituting back the real values in terms of xx, we get the final result as,
\dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \cot \left[ {{{\cos }^{ - 1}}x} \right]
This is the required answer.

(2)
We have to differentiate cot1(1+x2x){\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) with respect to xx.
So, we have to find ddxcot1(1+x2x)\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)
So, we will follow chain rule to solve this problem.
Chain rule is defined as ddxf(g(x))=f(g(x)).g(x)\dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right).g'\left( x \right)
ddxcot1(1+x2x)=11+(1+x2x)2ddx(1+x2x)\Rightarrow \dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{{ - 1}}{{1 + {{\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)}^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) (ddtcot1t=11+t2)\left( {\because \dfrac{d}{{dt}}{{\cot }^{ - 1}}t = \dfrac{{ - 1}}{{1 + {t^2}}}} \right)

11+(1+x2x2)(xddx1+x21+x2ddxxx2) \Rightarrow \dfrac{{ - 1}}{{1 + \left( {\dfrac{{1 + {x^2}}}{{{x^2}}}} \right)}}\left( {\dfrac{{x\dfrac{d}{{dx}}\sqrt {1 + {x^2}} - \sqrt {1 + {x^2}} \dfrac{d}{{dx}}x}}{{{x^2}}}} \right) (ddx(uv)=v.duu.dvv2)\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.du - u.dv}}{{{v^2}}}} \right)
Now, we have to simplify this as follows.
1x2+1+x2x2(x(121+x2ddx(1+x2))1+x2x2)\Rightarrow \dfrac{{ - 1}}{{\dfrac{{{x^2} + 1 + {x^2}}}{{{x^2}}}}}\left( {\dfrac{{x\left( {\dfrac{1}{{2\sqrt {1 + {x^2}} }}\dfrac{d}{{dx}}(1 + {x^2})} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right) (ddtt=12t)\left( {\because \dfrac{d}{{dt}}\sqrt t = \dfrac{1}{{2\sqrt t }}} \right) and (ddttn=ntn1)\left( {\because \dfrac{d}{{dt}}{t^n} = n{t^{n - 1}}} \right)
x22x2+1(x(2x21+x2)1+x2x2)\Rightarrow \dfrac{{ - {x^2}}}{{2{x^2} + 1}}\left( {\dfrac{{x\left( {\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right)
So, finally we get the result as,
12x2+1((x21+x2)1+x2)\Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\left( {\dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} } \right)
12x2+1(x2(1+x2)1+x2)=1(2x2+1)1+x2\Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\dfrac{{{x^2} - (1 + {x^2})}}{{\sqrt {1 + {x^2}} }}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}
So, finally, we can conclude that,
ddxcot1(1+x2x)=1(2x2+1)1+x2\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}
This is the required result.

(3)
We have to differentiate tan1(a+x1ax){\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) with respect to xx
So, we have to find ddxtan1(a+x1ax)\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)
Take a=tanma = \tan m and x=tannx = \tan n. So, when you differentiate the second substitution, we get, 1=sec2n.dndx1 = {\sec ^2}n.\dfrac{{dn}}{{dx}} (ddttant=sec2t)\left( {\because \dfrac{d}{{dt}}\tan t = {{\sec }^2}t} \right)
So, on substitution, we get,
ddxtan1(a+x1ax)=ddxtan1(tanm+tann1tanm.tann)\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{\tan m + \tan n}}{{1 - \tan m.\tan n}}} \right)
We know that, tan(A+B)=tanA+tanB1tanA.tanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}
ddxtan1(tan(m+n))\Rightarrow \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\tan (m + n)} \right)
And we know that, tan1(tanθ)=θ{\tan ^{ - 1}}(\tan \theta ) = \theta
So, we get,
ddx(m+n)=ddxm+ddxn\Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = \dfrac{d}{{dx}}m + \dfrac{d}{{dx}}n
As, mm is constant,
V
ddx(m+n)=0+1sec2n\Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = 0 + \dfrac{1}{{{{\sec }^2}n}}
We know that, sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
From this, we can write as,
11+tan2n=11+x2\Rightarrow \dfrac{1}{{1 + {{\tan }^2}n}} = \dfrac{1}{{1 + {x^2}}}
So, finally the result is
ddxtan1(a+x1ax)=11+x2\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{1}{{1 + {x^2}}}
This is the required result.

Note: Differentiation of a constant is always 0. And also make a note that, ddxf(y)=f(y).dydx\dfrac{d}{{dx}}f(y) = f'(y).\dfrac{{dy}}{{dx}}.
Also remember the formula tan1(x+y1xy)=tan1x+tan1y{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y which will be very useful to you.
Differentiation of a function of another variable is always zero i.e., ddxf(y)=0\dfrac{d}{{dx}}f(y) = 0 if x and yx{\text{ and }}y are not related.