Question
Question: Differentiate the following functions with respect to \[x\] (1) \[\sin \left\\{ {2{{\tan }^{ - 1}}...
Differentiate the following functions with respect to x
(1) \sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\}
(2) cot−1(x1+x2)
(3) tan−1(1−axa+x)
Solution
We use many differentiation formulas and differentiating techniques to solve this problem. We will use substitution methods and some simplification methods and solve this problem. In the substitution method, we will substitute a value for a variable, which makes our problem simpler.
Complete answer:
(1)
We have to differentiate \sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} with respect to x.
So, we have to find the value of \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\}
So, we will use a substitution method to solve this problem.
We will substitute x=cos2θ ------(a)
So, we get it as
\dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} } \right]} \right\\}
We all know the formula 1+cos2θ1−cos2θ=tan2θ
So, we can write it as
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {{{\tan }^2}\theta } } \right]} \right\\}
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\tan \theta } \right]} \right\\}
As we know that, tan−1(tanθ)=θ
The equation will change as,
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\}
So, now on differentiating this, we get,
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = 2\cos 2\theta .\dfrac{{d\theta }}{{dx}} (∵dxdsinx=cosx) and (∵dxdcosx=−sinx)
From equation (a), x=cos2θ, differentiating this with respect to x, we get, 1=−2sin2θ.dxdθ
So, from this, we can write, dxdθ=2sin2θ−1
Now substituting this value in our main result, we get,
\dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = - 2\cos 2\theta .\dfrac{{ - 1}}{{2\sin 2\theta }}
\Rightarrow \dfrac{d}{{dx}}\sin \left\\{ {2\theta } \right\\} = \cot 2\theta
Now, substituting back the real values in terms of x, we get the final result as,
\dfrac{d}{{dx}}\sin \left\\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\\} = \cot \left[ {{{\cos }^{ - 1}}x} \right]
This is the required answer.
(2)
We have to differentiate cot−1(x1+x2) with respect to x.
So, we have to find dxdcot−1(x1+x2)
So, we will follow chain rule to solve this problem.
Chain rule is defined as dxdf(g(x))=f′(g(x)).g′(x)
⇒dxdcot−1(x1+x2)=1+(x1+x2)2−1dxd(x1+x2) (∵dtdcot−1t=1+t2−1)
⇒1+(x21+x2)−1x2xdxd1+x2−1+x2dxdx (∵dxd(vu)=v2v.du−u.dv)
Now, we have to simplify this as follows.
⇒x2x2+1+x2−1x2x(21+x21dxd(1+x2))−1+x2 (∵dtdt=2t1) and (∵dtdtn=ntn−1)
⇒2x2+1−x2x2x(21+x22x)−1+x2
So, finally we get the result as,
⇒2x2+1−1((1+x2x2)−1+x2)
⇒2x2+1−1(1+x2x2−(1+x2))=(2x2+1)1+x21
So, finally, we can conclude that,
dxdcot−1(x1+x2)=(2x2+1)1+x21
This is the required result.
(3)
We have to differentiate tan−1(1−axa+x) with respect to x
So, we have to find dxdtan−1(1−axa+x)
Take a=tanm and x=tann. So, when you differentiate the second substitution, we get, 1=sec2n.dxdn (∵dtdtant=sec2t)
So, on substitution, we get,
dxdtan−1(1−axa+x)=dxdtan−1(1−tanm.tanntanm+tann)
We know that, tan(A+B)=1−tanA.tanBtanA+tanB
⇒dxdtan−1(tan(m+n))
And we know that, tan−1(tanθ)=θ
So, we get,
⇒dxd(m+n)=dxdm+dxdn
As, m is constant,
V
⇒dxd(m+n)=0+sec2n1
We know that, sec2θ−tan2θ=1
From this, we can write as,
⇒1+tan2n1=1+x21
So, finally the result is
dxdtan−1(1−axa+x)=1+x21
This is the required result.
Note: Differentiation of a constant is always 0. And also make a note that, dxdf(y)=f′(y).dxdy.
Also remember the formula tan−1(1−xyx+y)=tan−1x+tan−1y which will be very useful to you.
Differentiation of a function of another variable is always zero i.e., dxdf(y)=0 if x and y are not related.