Solveeit Logo

Question

Question: Differentiate the following function with respect to \(x\): \(\dfrac{\sec x+\tan x}{\sec x-\tan x}\)...

Differentiate the following function with respect to xx: secx+tanxsecxtanx\dfrac{\sec x+\tan x}{\sec x-\tan x}

Explanation

Solution

Simplify the expression by using the identity for the secθ\sec \theta and tanθ\tan \theta . After that we need to apply here the product rule of differentiation when the differentiating the two function which is multiplied together,
ddx [f(x) g(x)] = f(x) [ddx g(x)] + [ddx f(x)] g(x)\dfrac{d}{dx}\text{ }[f(x)\text{ }g(x)]\text{ }=\text{ }f(x)\text{ }\left[ \dfrac{d}{dx}\text{ }g(x) \right]\text{ }+\text{ }\left[ \dfrac{d}{dx}\text{ }f(x) \right]\text{ }g(x).
Then we need use the chain rule for differentiating function of function,
ddxf[g(x)]=ddg(x)f[g(x)]×ddxg(x)\dfrac{d}{dx}f\left[ g(x) \right]=\dfrac{d}{dg(x)}f\left[ g(x) \right]\times \dfrac{d}{dx}g(x)
By applying rules we have to apply the property of differentiation. Using these concepts we get the answer.

Complete step by step solution:
Let us first simplify the given expression.
Let's say that y=secx+tanxsecxtanxy=\dfrac{\sec x+\tan x}{\sec x-\tan x}.
Using secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, we get:
\Rightarrow y=1cosx+sinxcosx1cosxsinxcosxy=\dfrac{\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x}}
\Rightarrow y=(1+sinxcosx)×(cosx1sinx)y=\left( \dfrac{1+\sin x}{\cos x} \right)\times \left( \dfrac{\cos x}{1-\sin x} \right)
\Rightarrow y=1+sinx1sinxy=\dfrac{1+\sin x}{1-\sin x}
Which can also be written as:
\Rightarrow y=(1+sinx)(1sinx)1y=(1+\sin x){{(1-\sin x)}^{-1}}
Now, let us differentiate with respect to x.
Using the product rule of derivatives, we get:
\Rightarrow dydx=(1+sinx)[ddx(1sinx)1]+[ddx(1+sinx)](1sinx)1\dfrac{dy}{dx}=(1+\sin x)\left[ \dfrac{d}{dx}{{(1-\sin x)}^{-1}} \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}
Using the chain rule of derivatives, we get:
\Rightarrow dydx=(1+sinx)[(1)(1sinx)2ddx(1sinx)]+[ddx(1+sinx)](1sinx)1\dfrac{dy}{dx}=(1+\sin x)\left[ (-1){{(1-\sin x)}^{-2}}\dfrac{d}{dx}(1-\sin x) \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}
Using ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x and ddxk=0\dfrac{d}{dx}k=0, we get:
\Rightarrow dydx=(1+sinx)(1)(1sinx)2(cosx)+cosx(1sinx)1\dfrac{dy}{dx}=(1+\sin x)(-1){{(1-\sin x)}^{-2}}(-\cos x)+\cos x{{(1-\sin x)}^{-1}}
Which can be written as:
\Rightarrow dydx=(1+sinx)(cosx)(1sinx)2+cosx(1sinx)\dfrac{dy}{dx}=\dfrac{(1+\sin x)(\cos x)}{{{(1-\sin x)}^{2}}}+\dfrac{\cos x}{(1-\sin x)}
Separating the common factor cosx\cos x, and adding by equating the denominators, we get:
\Rightarrow dydx=cosx[1+sinx(1sinx)2+1sinx(1sinx)2]\dfrac{dy}{dx}=\cos x\left[ \dfrac{1+\sin x}{{{(1-\sin x)}^{2}}}+\dfrac{1-\sin x}{{{(1-\sin x)}^{2}}} \right]

\Rightarrow dydx=2cosx(1sinx)2\dfrac{dy}{dx}=\dfrac{2\cos x}{{{(1-\sin x)}^{2}}}, which is the required answer.

Note: The final answer can be modified in terms of other trigonometric functions, the resulting value being the same.
Derivatives of Trigonometric Functions:
ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x ddxcosx=sinx\dfrac{d}{dx}\cos x=-\sin x
ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x ddxcotx=csc2x\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x
ddxsecx=tanxsecx\dfrac{d}{dx}\sec x=\tan x\sec x ddxcscx=cotxcscx\dfrac{d}{dx}\csc x=-\cot x\csc x