Solveeit Logo

Question

Question: Differentiate the following function with respect to\[x\]:\(\sqrt{\tan \sqrt{x}}\)....

Differentiate the following function with respect toxx:tanx\sqrt{\tan \sqrt{x}}.

Explanation

Solution

Lety=tanxy=\sqrt{\tan \sqrt{x}}, then differentiate y with respect to xx.
First of all let us see what is the differentiation of tanx\tan xand x\sqrt{x}.
Then we have
d(tanx)dx=sec2x\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x
dxdx=d(x)12dx\dfrac{d\sqrt{x}}{dx}=\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}
As we know d(x)dxn=nxn1{{\dfrac{d\left( x \right)}{dx}}^{n}}=n{{x}^{n-1}}
Therefore we have, d(x)12dx=12x121\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} =12x121=12x12=12x=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}=\dfrac{1}{2\sqrt{x}}.

Complete step by step answer:
Now we will find the differentiation of tanx\sqrt{\tan \sqrt{x}}with respect toxx.
For this, let us consider
y=tanxy=\sqrt{\tan \sqrt{x}}
Differentiating y with respect toxx, we get
dydx=ddxtanx\dfrac{dy}{dx}=\dfrac{d}{dx}\sqrt{\tan \sqrt{x}}
dydx=12tanx.d(tanx)dx\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.\dfrac{d\left( \tan \sqrt{x} \right)}{dx}
dydx=12tanx.sec2x.d(x)dx\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{d\left( \sqrt{x} \right)}{dx}
dydx=12tanx.sec2x.12x\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{1}{2\sqrt{x}}
dydx=sec2x4xtanx\Rightarrow \dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}

d(tanx)dx=sec2x4xtanx\therefore \dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}

Hence, differentiation of tanx\sqrt{\tan \sqrt{x}}with respect to xx is d(tanx)dx=sec2x4xtanx\dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}.

Note: The basic differentiation rules that need to be followed are:
(a) Sum or difference rule – If the function is sum or difference of two function, then the derivatives of the function is the sum or difference of the individual functions, i.e., if x=y±zx=y\pm z, then dxdt=dydt±dzdt\dfrac{dx}{dt}=\dfrac{dy}{dt}\pm \dfrac{dz}{dt}.
(b) Product rule – As per the product rule, if function xxis the product of two functions yy andzz, then the derivative of the function is as below.
Ifx=yzx=yz, then
dxdt=dydt.z+dzdt.y\dfrac{dx}{dt}=\dfrac{dy}{dt}.z+\dfrac{dz}{dt}.y
(c) Quotient rule – If the function xx is in the form two functionsyz\dfrac{y}{z}, then the derivative of the function is as below.
If x=yzx=\dfrac{y}{z}, then
dxdt=dydt.zdzdt.yz2\dfrac{dx}{dt}=\dfrac{\dfrac{dy}{dt}.z-\dfrac{dz}{dt}.y}{{{z}^{2}}} .
(d) Chain rule – If a function y=f(x)=g(u)y=f\left( x \right)=g\left( u \right) and ifu=h(x)u=h\left( x \right), then the chain rule for differentiation is defined as,
dydx=dydu×dudx\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}.
This plays a major role in the method of substitution that helps to perform differentiation of composite functions.