Solveeit Logo

Question

Question: Differentiate the following function with respect to \(x\): \({{x}^{n}}{{\log }_{a}}x\text{ }{{e}^...

Differentiate the following function with respect to xx:
xnlogax ex{{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}

Explanation

Solution

Hint: For solving this question we will write the term logax{{\log }_{a}}x as lnxlna\dfrac{\ln x}{\ln a} in the given function and then, differentiate y=1lna(xnlnx ex)y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) with respect to xx. After that, we will apply the product rule of differential calculus, and formulas like d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}, d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x} and d(ex)dx=ex\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}. Then, we will arrange the terms in the result to get the final answer.

Complete step-by-step answer:
We to differentiate the following function with respect to xx:
y=xnlogax exy={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}
Now, as we will use the formula logcb=logeblogec{{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c} to write logax=logexlogea{{\log }_{a}}x=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}a} in the above equation. Then,
y=xnlogax ex y=xn×logexlogea×ex \begin{aligned} & y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}} \\\ & \Rightarrow y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\\ \end{aligned}
Now, we can write logex=lnx{{\log }_{e}}x=\ln x and logea=lna{{\log }_{e}}a=\ln a in the above equation. Then,
y=xn×logexlogea×ex y=1lna(xnlnx ex)..................(1) \begin{aligned} & y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\\ & \Rightarrow y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)..................\left( 1 \right) \\\ \end{aligned}
Now, before we proceed, we should know the following formulas and concepts of differential calculus:
1. If y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) , then dydx=d(f(x)g(x))dx=f(x)g(x)+f(x)g(x)\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right) . This is also known as the product rule of differentiation.
2. If y=xny={{x}^{n}} , then dydx=d(xn)dx=nxn1\dfrac{dy}{dx}=\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} .
3. If y=lnxy=\ln x , then dydx=d(lnx)dx=1x\dfrac{dy}{dx}=\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x} .
4. If y=exy={{e}^{x}} , then dydx=d(ex)dx=ex\dfrac{dy}{dx}=\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}} .
Now, from the equation (1) we have the following equation:
y=1lna(xnlnx ex)y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)
Now, we will differentiate the above equation with respect to xx . Then,
y=1lna(xnlnx ex) dydx=d(1lna(xnlnx ex))dx \begin{aligned} & y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\\ \end{aligned}
Now, as 1lna\dfrac{1}{\ln a} is a constant term so, we can write d(1lna(xnlnx ex))dx=1lnad(xnlnx ex)dx\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} . Then,
dydx=d(1lna(xnlnx ex))dx dydx=1lnad(xnlnx ex)dx \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\\ \end{aligned}
Now, we will use the product rule of differentiation to write d(xnlnx ex)dx=(lnx ex)×d(xn)dx+(xnex)×d(lnx)dx+(xnlnx)×d(ex)dx\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx}=\left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} in the above equation. Then,
dydx=1lnad(xnlnx ex)dx dydx=1lna×((lnx ex)×d(xn)dx+(xnex)×d(lnx)dx+(xnlnx)×d(ex)dx) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\\ \end{aligned}
Now, we will use the formulas of the differential calculus discussed above, to write d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} , d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x} and d(ex)dx=ex\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}} in the above equation. Then,
dydx=1lna×((lnx ex)×d(xn)dx+(xnex)×d(lnx)dx+(xnlnx)×d(ex)dx) dydx=1lna((lnx ex)×(nxn1)+(xnex)×1x+(xnlnx)×ex) dydx=1lna(nxn1lnx ex+xn1ex+xnlnx ex) dydx=xn1exlna(nlnx+xlnx+1) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( \left( \ln x\text{ }{{e}^{x}} \right)\times \left( n{{x}^{n-1}} \right)+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{1}{x}+\left( {{x}^{n}}\ln x \right)\times {{e}^{x}} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( n{{x}^{n-1}}\ln x\text{ }{{e}^{x}}+{{x}^{n-1}}{{e}^{x}}+{{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right) \\\ \end{aligned}
Now, from the above result we conclude that if y=xnlogax exy={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}} then, differentiation of yy with respect to xx will be dydx=xn1exlna(nlnx+xlnx+1)\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right) .
Thus, dydx=xn1exlna(nlnx+xlnx+1)\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right) will be our final answer.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And first, we should write the term logax{{\log }_{a}}xas lnxlna\dfrac{\ln x}{\ln a} and then, differentiate y=1lna(xnlnx ex)y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) with respect to xx . Moreover, we should apply the product rule of differential calculus, and formulas like d(xn)dx=nxn1\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} , d(lnx)dx=1x\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x} and d(ex)dx=ex\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}} correctly without any mathematical error to get the correct answer easily.